From f34adba86ba581455741fa322fbf46e506a113eb Mon Sep 17 00:00:00 2001 From: br0kenpixel <23280129+br0kenpixel@users.noreply.github.com> Date: Wed, 16 Apr 2025 10:29:11 +0200 Subject: [PATCH] cviko 8 --- notebook/cviko8.ipynb | 2457 +++++++++++++++++++++++++++++ notebook/graf.png | Bin 0 -> 57659 bytes notebook/loan_historical_data.csv | 13 + notebook/titanic_full.csv | 892 +++++++++++ 4 files changed, 3362 insertions(+) create mode 100644 notebook/cviko8.ipynb create mode 100644 notebook/graf.png create mode 100644 notebook/loan_historical_data.csv create mode 100644 notebook/titanic_full.csv diff --git a/notebook/cviko8.ipynb b/notebook/cviko8.ipynb new file mode 100644 index 0000000..74f6e01 --- /dev/null +++ b/notebook/cviko8.ipynb @@ -0,0 +1,2457 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pandas\n", + " Using cached pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (89 kB)\n", + "Requirement already satisfied: numpy>=1.26.0 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from pandas) (2.2.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from pandas) (2.9.0.post0)\n", + "Collecting pytz>=2020.1 (from pandas)\n", + " Downloading pytz-2025.2-py2.py3-none-any.whl.metadata (22 kB)\n", + "Collecting tzdata>=2022.7 (from pandas)\n", + " Downloading tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Requirement already satisfied: six>=1.5 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Using cached pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB)\n", + "Downloading pytz-2025.2-py2.py3-none-any.whl (509 kB)\n", + "Downloading tzdata-2025.2-py2.py3-none-any.whl (347 kB)\n", + "Installing collected packages: pytz, tzdata, pandas\n", + "Successfully installed pandas-2.2.3 pytz-2025.2 tzdata-2025.2\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "loans = pandas.read_csv('loan_historical_data.csv', sep=\";\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClientIncomeCreditGenderUnemployedSafe
0K1HighExcellentFemaleNoYes
1K2HighExcellentManNoYes
2K3LowPoorManNoNo
3K4LowExcellentFemaleYesYes
4K5LowExcellentManYesYes
5K6LowPoorFemaleYesNo
6K7HighPoorManNoYes
7K8HighPoorFemaleYesYes
8K9LowFairManYesNo
9K10HighFairFemaleNoYes
10K11LowFairFemaleYesNo
11K12LowFairManNoYes
\n", + "
" + ], + "text/plain": [ + " Client Income Credit Gender Unemployed Safe\n", + "0 K1 High Excellent Female No Yes\n", + "1 K2 High Excellent Man No Yes\n", + "2 K3 Low Poor Man No No\n", + "3 K4 Low Excellent Female Yes Yes\n", + "4 K5 Low Excellent Man Yes Yes\n", + "5 K6 Low Poor Female Yes No\n", + "6 K7 High Poor Man No Yes\n", + "7 K8 High Poor Female Yes Yes\n", + "8 K9 Low Fair Man Yes No\n", + "9 K10 High Fair Female No Yes\n", + "10 K11 Low Fair Female Yes No\n", + "11 K12 Low Fair Man No Yes" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loans" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting scikit-learn\n", + " Downloading scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)\n", + "Requirement already satisfied: numpy>=1.19.5 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from scikit-learn) (2.2.4)\n", + "Requirement already satisfied: scipy>=1.6.0 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from scikit-learn) (1.15.2)\n", + "Collecting joblib>=1.2.0 (from scikit-learn)\n", + " Downloading joblib-1.4.2-py3-none-any.whl.metadata (5.4 kB)\n", + "Collecting threadpoolctl>=3.1.0 (from scikit-learn)\n", + " Downloading threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)\n", + "Downloading scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.2/13.2 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading joblib-1.4.2-py3-none-any.whl (301 kB)\n", + "Downloading threadpoolctl-3.6.0-py3-none-any.whl (18 kB)\n", + "Installing collected packages: threadpoolctl, joblib, scikit-learn\n", + "Successfully installed joblib-1.4.2 scikit-learn-1.6.1 threadpoolctl-3.6.0\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install scikit-learn" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier\n", + "from sklearn.model_selection import train_test_split # Import train_test_split function\n", + "from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "arr1 = [1,1,2,2,2,4,4,2,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{1, 2, 3, 4}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "set(arr1)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 2, 3, 4]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(set(arr1))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "arr2 = [\"High\", \"Low\", \"Low\", \"Low\", \"High\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['High', 'Low']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(set(arr2))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "def cat2int(col):\n", + " vals = list(set(col))\n", + " for i, string in enumerate(col):\n", + " col[i] = vals.index(string)\n", + " return col" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 1\n", + "2 1\n", + "3 0\n", + "4 1\n", + "5 0\n", + "6 1\n", + "7 0\n", + "8 1\n", + "9 0\n", + "10 0\n", + "11 1\n", + "Name: Gender, dtype: object" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat2int(loans[\"Gender\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClientIncomeCreditGenderUnemployedSafe
0K1HighExcellent0NoYes
1K2HighExcellent1NoYes
2K3LowPoor1NoNo
3K4LowExcellent0YesYes
4K5LowExcellent1YesYes
5K6LowPoor0YesNo
6K7HighPoor1NoYes
7K8HighPoor0YesYes
8K9LowFair1YesNo
9K10HighFair0NoYes
10K11LowFair0YesNo
11K12LowFair1NoYes
\n", + "
" + ], + "text/plain": [ + " Client Income Credit Gender Unemployed Safe\n", + "0 K1 High Excellent 0 No Yes\n", + "1 K2 High Excellent 1 No Yes\n", + "2 K3 Low Poor 1 No No\n", + "3 K4 Low Excellent 0 Yes Yes\n", + "4 K5 Low Excellent 1 Yes Yes\n", + "5 K6 Low Poor 0 Yes No\n", + "6 K7 High Poor 1 No Yes\n", + "7 K8 High Poor 0 Yes Yes\n", + "8 K9 Low Fair 1 Yes No\n", + "9 K10 High Fair 0 No Yes\n", + "10 K11 Low Fair 0 Yes No\n", + "11 K12 Low Fair 1 No Yes" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loans" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 0\n", + "2 0\n", + "3 1\n", + "4 1\n", + "5 1\n", + "6 0\n", + "7 1\n", + "8 1\n", + "9 0\n", + "10 1\n", + "11 0\n", + "Name: Unemployed, dtype: object" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat2int(loans[\"Income\"])\n", + "cat2int(loans[\"Credit\"])\n", + "cat2int(loans[\"Unemployed\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClientIncomeCreditGenderUnemployedSafe
0K10000Yes
1K20010Yes
2K31110No
3K41001Yes
4K51011Yes
5K61101No
6K70110Yes
7K80101Yes
8K91211No
9K100200Yes
10K111201No
11K121210Yes
\n", + "
" + ], + "text/plain": [ + " Client Income Credit Gender Unemployed Safe\n", + "0 K1 0 0 0 0 Yes\n", + "1 K2 0 0 1 0 Yes\n", + "2 K3 1 1 1 0 No\n", + "3 K4 1 0 0 1 Yes\n", + "4 K5 1 0 1 1 Yes\n", + "5 K6 1 1 0 1 No\n", + "6 K7 0 1 1 0 Yes\n", + "7 K8 0 1 0 1 Yes\n", + "8 K9 1 2 1 1 No\n", + "9 K10 0 2 0 0 Yes\n", + "10 K11 1 2 0 1 No\n", + "11 K12 1 2 1 0 Yes" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loans" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "#split dataset in features and target variable\n", + "\n", + "X = loans[['Income','Credit','Gender','Unemployed']] # Features\n", + "y = loans.Safe # Target variable" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
00000
10010
21110
31001
41011
51101
60110
70101
81211
90200
101201
111210
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "0 0 0 0 0\n", + "1 0 0 1 0\n", + "2 1 1 1 0\n", + "3 1 0 0 1\n", + "4 1 0 1 1\n", + "5 1 1 0 1\n", + "6 0 1 1 0\n", + "7 0 1 0 1\n", + "8 1 2 1 1\n", + "9 0 2 0 0\n", + "10 1 2 0 1\n", + "11 1 2 1 0" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 Yes\n", + "1 Yes\n", + "2 No\n", + "3 Yes\n", + "4 Yes\n", + "5 No\n", + "6 Yes\n", + "7 Yes\n", + "8 No\n", + "9 Yes\n", + "10 No\n", + "11 Yes\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=15) # 70% training and 30% test" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
90200
31001
41011
00000
70101
101201
51101
81211
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "9 0 2 0 0\n", + "3 1 0 0 1\n", + "4 1 0 1 1\n", + "0 0 0 0 0\n", + "7 0 1 0 1\n", + "10 1 2 0 1\n", + "5 1 1 0 1\n", + "8 1 2 1 1" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9 Yes\n", + "3 Yes\n", + "4 Yes\n", + "0 Yes\n", + "7 Yes\n", + "10 No\n", + "5 No\n", + "8 No\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
111210
60110
21110
10010
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "11 1 2 1 0\n", + "6 0 1 1 0\n", + "2 1 1 1 0\n", + "1 0 0 1 0" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11 Yes\n", + "6 Yes\n", + "2 No\n", + "1 Yes\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# Create Decision Tree classifer object\n", + "clf = DecisionTreeClassifier()\n", + "\n", + "# Train Decision Tree Classifer\n", + "# Training the model on the data, storing the information learned from the data\n", + "# Model is learning the relationship between x (features: Income, Credit,\tGender,\tUnemployed) and y (Safe)\n", + "clf = clf.fit(X_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
111210
60110
21110
10010
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "11 1 2 1 0\n", + "6 0 1 1 0\n", + "2 1 1 1 0\n", + "1 0 0 1 0" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['No', 'Yes', 'No', 'Yes'], dtype=object)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11 Yes\n", + "6 Yes\n", + "2 No\n", + "1 Yes\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.75\n" + ] + } + ], + "source": [ + "# Model Accuracy, how often is the classifier correct?\n", + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "clf = DecisionTreeClassifier()\n", + "clf = clf.fit(X_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.5\n" + ] + } + ], + "source": [ + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pydotplus\n", + " Downloading pydotplus-2.0.2.tar.gz (278 kB)\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: pyparsing>=2.0.1 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from pydotplus) (3.2.3)\n", + "Building wheels for collected packages: pydotplus\n", + " Building wheel for pydotplus (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for pydotplus: filename=pydotplus-2.0.2-py3-none-any.whl size=24687 sha256=c477e8981a47f023f93b6f4aa926f3899a8d5302c81197821877eb34780c3280\n", + " Stored in directory: /home/br0kenpixel/.cache/pip/wheels/4a/c0/ed/a9eeeb08c3c53bb90d3822cf76557c8fdcbc349ee11a011169\n", + "Successfully built pydotplus\n", + "Installing collected packages: pydotplus\n", + "Successfully installed pydotplus-2.0.2\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install pydotplus" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import export_graphviz\n", + "from six import StringIO\n", + "from IPython.display import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "import pydotplus" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAJUCAIAAAB2UGFlAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydZVxUTxfHZwuWJZbu7kYFVDAAARVRVARsUbG7AwtUQLAVO/4mUqJigIIBEiIqICUd0t258by4Puu6hMTCCsz344vdc8/cOfd+3B8z5945g6JSqQACgUAGETSrA4BAICMOqDsQCGSwgboDgUAGGyyrA/i38PX1ZXUIIxQpKSkDAwNWRwEZJFAwr0wPCoVidQgjFBsbGz8/P1ZHARkk4HiHkd1n702wmMfqKEYWHluXsDoEyKAC8zsQCGSwgboDgUAGG6g7EAhksIG6A4FABhuoOxAIZLCBugOBQAYbqDsQCGSwgbozlIgOeebt6UImkwAAPpfcPr6EL9pBhiTwvUFmUltZnvQ5vLy4AIVCCYpKqOtP5BMUYeL5P715Fvbcx3r1TgwG63PZTd/YYpKlLRPPj0ClUlO+RGQmxVGpVFkVTe3xxmgMplPPjy/9CnPSGYyCYlJm85YxPSrIcALqDnNobWm65br37eN7ZDIJhUajUCgKmYzB4oytFqw9fJYNz8H0Hm+HZ+Jw7Mjnguz0uI9vZtlv6v9pW5oaXNbbJsaEc/HworHYuqoKZR39wzeecvHwdnQO8b+T9PkjJzeR3qgyaizUHUj3QN1hAu1trYeXz0yLjzGcNnfemp1yqtpUQM1LS/a76vE24H5xfrbLvWAUmslTWl4BYdrniFf+bwPu90p3qstLygrzVEaNY7DfPrE/6fPHLW7XTOYsRqFQMaHPPbYuuea8befpOx1P0lRfJ6OscfZJdD+uAzISgfkdJhBw40xafMz0hav3nH+goDEajcFgMFh5dZ29Fx4az16Y8iXy/TMvAIDv5RNfPgS3NDW88b398eWvhe9UCiU+8u3T2+ef3Dz7+d3L9rZW+jOXF/8M8roecOPM53cvyaR2+kO0/I7vFfeIIP/G+hpvT5ewQO/uQyWT2mNCnx9fZ+NgrBz+gjE91NzY8O7Jg/FmVlPmLkGWyI4zm2UyZ1HEK//qitKOZ2uqryNwETvaIZDugeOd/kKlUoO8rnPyEJfvcel4dPkeV8Npc3UnTwUA+F87OXmm3bP/zifGhKuNMZhkaVdZUnhs3by89GRpRTU0BpOfkSooKnHoWoCkggoA4MuHYI+tiwEAMsoa1RWlAsLigmKStDPT8jsZ379UlRaR2tvT4j+TSaSu4izISgt9fPf9M6+6qgqtcZO3ud8cb27F4PMj7hOpvW30JHN64+hJ5qGP7yXFhE2ytGPwb6ivkZBX7uudg4xcoO70l+K8zJrKMoOpc/AcnB2P8goIj51iiXzGYLFJsRFyKlo33qUiw4TTu1aU5GW7P3qnrKOPSMP+xWandiw79yyGTCZdOrSRk5vo5hUqKi0PAPC/fsrr/NGOXRy44rdz3sS66sojN591PNrc2BDxyj/08b20+BhBMclp8x1MrZeKSMp2ei1FeZkAADEZBXoj0ntRblZH/6b6OgI3T0l+dlJsRE1lmZCYlJ7RdE4eOAKC/AWoO/2lurwEACAiKfNXTxQaXVFccNI3jJuXHwCQl56c8iVyzsqtiOgAACQVVGbZb/I6fzQj8Wt7a0t1eYntuj3Izx4AMG/1ztePbpYX/+xVeFedt0YGBYwznbng5rNRhlO6TzM1N9QDAAhc3PRG5GtjfS2Dc1trC6m97XvU+4iX/nhOTiqVisjQrtN3x0ye2qsgISMNqDv9BYPFIbOtnjhLyisjogMAyEqJBwAU52V5e/6eoBXmZAAAclK/I1+lldRoh1AolKyqVm91B4WARvcksd3pVSDGjhXR2lpbFDRGE/kFl+44KqemDQD4Hv3h5PalHluXXHnznU9ItFdxQkYUUHf6i4CIOE0v/goPnwDtc3NjPQDgZ+YPhpStso4+OwehtrIMAMD+59wNT+hkKtc965zOa40zCvW/67RylpC4tKn1UtN5S4XEpDp1Rh6WN9bX0Rub6usAAJwdnqNz8fCefhxBb9E2MF64+eD1YztiQp9PX7i6t6FCRg5Qd/qLkLi0qLT8908f6qor6WWFxqeQQF2jaTg2dgAAoBs1cHIRAQBzHLZNtVvRsdVrn1sAgNbmRnpjQ211b8PDc3CaWi81tV5amJMR6n8n+NENn8tuOgYm5jb248xmYXFs9M7iskpIxkp7vBHNiEiqhJxST7qTkFMGANRVV/Y2TsiIAj5HZwIWC1e3tTRfc95GpVAYDr24f/nE5oVPbp3r2EpeYxQAIC0+ht6Ym5b0PfoDhUwWk1YAAORnpNIOkckkZGrWNyTklOx3u9wKz9h3wQvHxn5614o7HgcYfFTHjGPHE76GvaY3xr5/hcFgtccbMzinfIl0crCKff+K3pidEg8AEJGS63OckJEA1B0mYGW/SdvAODI4wGmVVerXKDKZRKVQCrLTrzptvemyW1lHf67Dto6tpBXV1HQNw5770H7nlaVFZ3Yuv+i4jkwmqY4Zz0XkC/G7gww3qBTKHXfHpj9nQDTY8BwNtVVtrS1/DRWDwY4zm3Xgit+tD+mTLG0YjrLjCdMWOMS+fxXqfxdJ63x49igy6LHpvKVIWur7pzBvT5eiXGQEpJz6Nfra0e3ZKQlI87iIUL9rHvSP8CCQToHzLCaAQqMPX39y/8yRoEc39i82R6FQaDSGTCbh2NinL1y9ct+JX5OsDuw4dfv42nnH1lqLSMlx8fDmZ6Rw8fA6XvFD/NcePntuz6rNM3VFpeSry4ullTSMrRaEPr5HoZAZzqOha5j6NWr1FFVhcemTfuH0h2667I6LCOm0d5O5Szq+r7xku1NhTrrnwQ13Tx1EoVB11ZU6hiYr97sjRxM/ffC76qGoOUZcVokoILTP89GZXSt2WBsSBYTaWpqbGxuExKT2XvTi4OTqx+2EDH/gPjZ/gEKh4H4Sg4/H1iXi3Bi4j83IAc6zIBDIYAN1BwKBDDZQdyAQyGADdQcCgQw2UHcgEMhgA3UHAoEMNlB3Bpbk2AhvT5dOi2b12RMCGerA9wYHluQvkd6eruNMZ/21wHvPPXtIbWX51/DXVeUlRD7BMZPMBUQlehRw7MfEmHDdydOUtPVoRiqFkhgTnp2agGNnVx09XkF9FH2T8uKf8RFva6vK+YXF9IwtOl2kBoHQA3VnYLFavsncdnlPfoo99+wJkUGPLzqub29r5RUSqa0sR6FQ65zOm1ov7b5VXXWlx7altZXl3HwCNN1pqq87vt4m5UskD79ge2tLc2PDVLuV650vIJUxntw69+DMEQqFzM0nUFdVQeDi3nn6rq7RNKZcBWS4AnVnYMFzcHZah7A/nn+lrDDv7J5VCuqj9l3y5hMUaairObVt6aVDG5W19aUUVbtpeO3odjSKcep9wXFtWlzMnvMPDKfNJZPa73gceH7v0uhJZgbms79Hf7h78oCG/sQ95x4QBYTyM1KOrbE+tWPZlTeJ9GXnBw0/P7/k5OTB73cQ0NDQsLVl/p5FrALqDhOgUijfPobkpScTuHnGmc7k4Rf0u+KurK0/ZvLU5NiIxJiwaQtW8QmKpH6NSoh+P8dhW1tz8+d3L+trqoQlZcZOsURWY9F79jOeNz63Se1tG455Iqfi4uHdePzSGlP1lw+vrjvSycp4hOg3T6OCAzYeu+R5cAPNmJee/CkkcPaKLYbT5iJFzpbucJZXHyWvqg0AeO17GwCw2eUKUUAIACCtpL5y/wn3LYvfPr4/b83Ofl5FH/D19Q0ICMDhcIPf9YDS3t5ubW0NdQfym/a21qOr5yTGhPMJifILid47dXDt4XPenq5zHbaNmTyVPmuT/v2Lt6erlKLaVaetnDy8ZBKpvChfUkHFwyeMwMXdTX4nyOt6bVV5p73rGVsoao5hMCbGhPMLi8koa9AsQuLSkgoq36M/dHUVddWVV523WSxaozrGgN7++d1LAIDJ7EU0Cxuew2TOr68FWT94BYRplViReFAoVNLncJboDgCAQqG0trb2wBHCSqDu9Jdg75uJMeEzl25wcPRAoVAZiV9dN9ghi9QZPNFoNADg3unDR24+Q8Ti0cXjPpfcIl75d1r6i0bM2xdd1TMUk1HsqDtFeZnSSuoMRlEp+W/hb6gUSqcFT68d3c6OJyzbebSipIjenpuWhMHipJXU89KTv3/6QGprk1cfpW1gjCR3OtYbwrGxc3Bxl+TndHM5EAjUnf4SE/oci2NbssMJ+SkqaelOtVvhc8mtK39zG3uaUkyytPO55NZxq18GnG4F9iqkpoZ6Dk5uBiOBi5tMJjU3NTKUbUdmWJFBj51vv8ATGOtX1FaW8fDye19yfXr7vLCEdE15aUNdjbrehEPXAjg4uSTkVfLfPC0tyKVtUFFe/LOpvo6dnfn7o0KGE/D9nf5SlJspKi1HnxIePdGsG38FjdG0z8iWLwx79Q0QXZVnR2ZYU+1W6BiadGxFJpHqqiszk77dDsvwfPntXnS+3fq9KV8iH5x1AgAgD8guH96EFCSrqSw7t2cVGzueoXwqBMIA1J3+0tLUwPHnMIGHX7AbfzwHYaBD4uQhNjUwViZsaqjDYHEdK8NfP7YDx8a+fE/nAzQOTi4ymbRynzsXkQ8AgMZgFm45JCgm+Sk0EACgZzx9rsO2hKj3ywxlNkwftcpYRVpJXURKtvs7AIHAeVZ/wbHjW1ua6S0NNb2uvt49vc0rS8gqFedmMhgLszPEZRUYxjupX6MiXvnrGk0LvHMBsSAl2b+Gva6vrjSZvUhMRhF8DOGgUysUCiUsIZOZ9A35ar/bZZKlXWJMGAqF0hw7WUZZfbG+hOH0ucy4bsiwBepOfxGVlMtJSyS1t9EmFwnR75nbRW/zyjqGJqnforNTEuTVdRBLQVZacX7WLPtNDJ4kEklWVauytKiy9Fc6mdTWCgDIS0uqKiseM2mqtoHxywdXkr9ETp75a5NiMplUnJspJCaJbDWR9Dl88sz5tI4+vvRtaW4cZzqTqTcAMtyAutNfRk8yT0v4HHDjjN2GfcgDoBC/O8ztord55WnzHZ7eOn/lyGbHy758QqK1leUXD6zHsbHPXLIOeQjlc9mNX1hsqt1KrXGTzz39RN+2IDt904zR1mt2Wi5eh6iMpILK3ZMHJOSVFdRHkUnt/7k7VleUWixei7ygeOXIluyUhNUHT2FxbLlpSXdOHpRX14F13SHdA3Wnv1jZb4p6/cTrwrG3Afd5+AVLf+Y4OJ48u3slC0PiExLddfbumV0rVhmr8AmLVpeX4nBsO07dRraXoVAp3p6uChqjp9r9PUgMBrvf0+fomrk7rSfwCYk21tW0tbZMsJiHvJ4zeqLZ9IWrgx/d+PjSl5Obt7z4p5Si6n5P757sTQoZyUDd6S8Ebp7TjyNiQp+X/MzhFRAeazoTSZFgsTgAgIbehAWbHHmFRAAAyqPGLtjkKCj+e69ODgLngk2OSlp6DJ79R8/Y4mpI8pcPQVVlxbyCIvrGFsgrxQAANAq9YJMjv7BYpw15+AQWbHJU1vq9KFRCTuniiy9fw18X5WSysbOr6RrSz+zWHTlnbrv8R9yn1qYmaSW10RPNkI2bIZBugLrTXyhkcnV5if6UGez4Xw+qUr9FAwCQ9d8a+hM19CcidhWdsSo6Y+nb4glcCzb92jyP3pMp8PAJTJm7pKMdhUbTOu20VcejbOx4A/PZXTVRUB/FsEIdAukeOB7uLzHvXqwxVX9w1hl5ebe+psrvijsGi9Mzms7q0CCQfxQ43ukv401nmVovfX7XM+KVP5+QSFFOJonUvvGYZw/r3UAgIxCoO/0FhUZvdr262fUqqwOBQIYMcJ4FgUAGG6g7EAhksIG6M+TxveIe/sKX1VFAIL0A5neGPH5X3HUMTWjrGFgFlUJJ+PShMDuNSqWKyyqNMpyCxmBYGxLknwXqDoQJFOVmeGxdkp+ZKqWgikKhfmb+EJGS2332npyaNqtDg/yLQN2BMIHTO1cU52Wf8vuILBDNz0zdt8Dk1I5ll4LiWR0a5F8E6k6/yM9MTYuLqa2u4OHlV9ebKCmvTDtEJrXHRYQW52UBAMRllUZPNKPNO3yvuMur6YyZZB77IaggK41XUNjAfDaBm6e5sSEm9Hl1eYm4rOLYKZbIKicqlepzyU1OTVvf2CIuIjQ/I4UNjx890UxcVqnTkKgUSkL0+9y0JCqFIiGvPHqiGVI3/q8B95m6qoqs5DiDqXNoq9KlFdX0TWaEPfcpK8wTlpDpfxeQYQbUnb5z1Xlb8KMbgmKSfEKiFcUF1eUls+w3Oex3BwCU5Gcfsp9RWVYkrahGJpMKstIkFVRc7r9Btsd6cvPMOLNZr31upX+PxXNwlhbkPr526uA1f+dVc6hUamtLU21luZ6xxcGr/ki9G78r7uPMZgU/upGR+JVXQKg4L5sKqBuPXeq4H1ZlSeGxdfPy0pOlFdXQGEx+RqqgqMShawGSCirdB0zPz8wfkcGPO71kPIFrzsqtDEY2Dg5a9WgaiGjS1o5AIPRA3ekjuWlJwY9u2KzZtWSHMzIqeXTxuO/lE8ZWCxQ0Rl913lZdUXraPwJJcHz5EHx83TwfT9fVh04jv8nPb1/MWLzuwBU/AMCDM0f8r5/at8hsg/PF8eZWFDL5+HqbLx+CELVCqvx9fvdymt3Kg9ceYzDY0oLcA0un3Ti2Exkl0Ud1eteKkrxs90fvlHX0kbI7+xebndqx7NyzmO4Dpj9JeVH+24AHnV41kV+wo+7gOTjHTJ4aFxlKG93UVpbHRYRq6E+kLUaFQOiButNHqstLAADs/y/Eh0Kh5m/YN3PJeqTEp8nsRZMsbWlZVT3j6Tx8ApnJcbTmGCxuwSZH5LPhdGv/66dklTXGm1shKjPezOpb+Jvi/CxEd5DV7ct2H8NgsAAAEUlZyyXr7548kPDpPf1yzbz05JQvkXNWbkVEBwAgqaAyy36T1/mjGYlfG2qruwmYnjGTp954l9qru7HtxI1z+1ZvtRqroT8Jg8Umx0YoaelucbvWy5sKGSlA3ekjGnoTpBRVH55zTv0WrTt5qvZ4EylFVdpv2MhqQW1lefSbpxXFBa2tLRQSiUKhNNPVPBaXVaLVJ0Squ0sp/t55pmO9dxllDfo5i4ySOgCgJC+bPqSslHgAQHFelrenC82IFCrMSf1ubLWgm4D7SU1VOYVEwnNwIrMtNnZ8Y31tSX42n5AoU84PGWZA3ekjbHgOD5+wlw+vRgUH3HTZTaVSxaQVFm09NMnSFgDge/mEzyU3dg4OGRUtTm4iBosltbXRN2fn+L3TC1LzuKOFHob5FDsHAQDQ2tJEb2xurEeyM9UVpfR2ZR19dg5C9wH3h4a6moPLpotJK1wJSUT21Whva3XbON/JYfaloDhBMcl+nh8y/IC603c4OLls1uyyWbOrrqri28eQgBunz+xaISgmicXivC4c0zO22HPuPhv+l5qsMlHpT18NdTX0X1uaGpEsL72Rk4sIAJjjsK2rXQC7Cljtzz1Ce5tXToh8W1dVsXLvCdpmPjg29ql2K799DPkSFjx9wao+XTFkOAN1p4/UVVWU/MxBMik8/ILGsxcqj9LfME0n7mMIv4g4AMBs3jKa6BTlZlSWFBIUVPvcXWFOeltLM+2EP7N+IJUA6X3kNUYBANLiY+h1Jzctqa6qQnPspIba6q4CZtCd3uaVW1tbOg6+kD02yKT2Pl8yZBgDdaePBPvcenTx+MEr/rpG0xDLj7gYAAC/iLigqAQAIP17LJInLi3IPb9vLb+IeGN9bZ+7a21qeuTpsmznMRQKVVVWHOR1nZOHqDXeiN5HWlFNTdcw7LmP4bS5SFSVpUVndi5vbmy4/Dqhm4AZ+uptXll7nBEWxxZ456Ke0XSk6lBddWXgnYtoDGbUhO62MISMWKDu9BEr+41JMWHH1loLiUvzCgrXVVWUFuTqGVuYWi9Fo9FKWroBN858eR+EweGKc7M2u11N/Rr94v5l51WzF2093IfudAxN0hNiHYyUBMUk89NT2tvbtrnfoN+kFGHHqdvH1847ttZaREqOi4c3PyOFi4fX8Yofjo29m4D7eSsExSS3ud+4fnznWnNNSXllDAZbkJ1OBdQNzhcZRmQQCALUnT6CJ3AdvfMqLeFzTkpCQ30tkU9QSVtPVkUTOXri0duYty9K8nO4iLy6k6cJiEroGU+XVFBpa2nmExSZt3oXfVl1Tm7eBZsc1cYY0ixSCmoLNjlKKajRLGgM9uidl3EfQ/MzUibPtNM1miYmrYAcsl2/V1RKDvksJCZ19kn095iw3B+JVCpVVFpOd/I0Nnb8XwPuJxNn2OhPmREf+a6sILe1tUVYXHrUBFPkJUkIpCMoZNtsCAIKhdp99t4Ei3msDuQPbLX5dQxNDl7tPNc7DPDYukScG+Pn59fP89ja2vr7+zMpqH8LGxub/t+ffwdYfwcCgQw2UHcgEMhgA/M7QwD6DA4EMgyAujMEsFu/l9UhQCDMBM6zIBDIYAPHO4NH6teohOj3U+1WdrU3+eCQlRIf++4l8nmc6awBKkX65UNQZtI35HM32yJDRiZQdwaPlK/R3p6uesYWrNWd7OR4b09XtTEGnDxEdd0JiLG8+GdKbGRlaZGAiLjqmPEikrI9OVV1Relr75sd7SazF5UX/cxM+lZakPsz8wfUHQgDUHdGKMv3uqrojEU++15x9718gkIhc/Py11VVoDHYuQ7blmx3+utJSvKyvD1dOTi5aDU9ELTGGVksWmOxaM3zu5633GByCsII1J2RTkzoc6/zRydZ2q13Ok/g5qmtLPfYtsT/2knV0eP0jC26b9tYXwcA2OZxa5zpzMGKFzIcgHnl3vHlQ5C3p0ttZTm9saayzNvT5cuHYORrcX5W6ON7j6+ffvfkQenPnE7P8/1TmLenS111Jc1SW1nu7emS9PkjzVJRXBDqf9f/2slg75tFuRkDdEUxb1+wseM3HruIlPghCggt23UMABAX8favbZsa6gAAnNzEAYoNMlyB453e0d7W6u3pykXkm7l0A80YFujt7em6/5IPUiz58c0zRD5BAVGJ0oLc5saGFXtd6Z0REj998LvqMXGGLW0RU21Vuben64JNQHPsJADAs/8u3Dt9mJObR0xGsaww75rztjkO2+x3He8YUpDX9dqq8o52AICesYWi5pjur2iL27XNrlfpK40hdXywONxf70ZjXQ0AgIOL+6+eEAg9UHd6h77JDC4e3ohXj+mlJPyFLw+/oJ7RtLT4GP/rpyZZ2m33uInGYNpamp1Xz/nP3XGCxTw+QZGe9/I9+sN/7vuNZs3f5HIFx8ZOIZNvn9j35OZZFZ2xSG0NemLevkCKmXZETEbxr7rTsbzha59biGb9tWFjQx1S1/3Lh6CC7HQMBqM6eryStt5fG0JGOFB3egcWxzbBYt4b39sVxQVIBc+ivMys5LhZ9pswWBwnD9/qg6dGTfi1VRYbnmPCdOvk2Ii8tKRe6U6Q13U0BrP28Dlk6ys0BmO/+3io/90Q/zsddcfpViBTLu3ZfxcqSgpTv0aV5GevOXRGa9zkvzZpqq8FABxeYVlVVswrIFxTWUalUMZOsdx19h6yCB4C6RSoO73GZM6i1z63IoMDZq/YAgAIf+4LADCduwQAICmvLCGrmJ745Y3vfw211WQyKTs5npYH6TlZKfF4Amfg3Yv0Rg5OrpzU78y+mt+89rld8jObSqGMM5slJC7VkyZcPHwKGqMnTLe2XLqOHU9oqq+76bLr3dOHD846rdx3YuBChQx1oO70GtXR48WkFSKCHiO68/Glr5yatqyqFrJd3/H1Nsi+V4Kikmzs+Kqy4j500dxYT2pv//YxhN4oJCE9oIOIy8HxVAqlpCDn8bVTLuttV+x1Qy6wG6xX77BevYP2lcDNs/H4pbjIt2HPvaHuQLoB6k5fMLJa4O3pUlqQ21BXU5iT4eDogdivH99ZlJt5/F4wkhsGAIQ+vud5YH1Pztnc1ED7TOAm4tjYPXw+9KRhP/PKNZVlbS3NyH57KDRaTFphk8uVxM8fn9+79Ffd6QgGixOVkvsRH9PbhkxBSkpKXl6eJV0PNFJSPRqBDhWg7vQFk9kLvT1dPoUE1laVY7A4o5nzEXt2cry0ohpNdAAA36Pfd3oGJHHTRFdxOSvp965+Cuqjot88ZdhcPPyFr4b+RIEO5ZD7mVfeO9+kraX5VlgGbft2AAAahW5orO++IbLxcW1F2d6LXjRLW0tzQXaaqCRrVs+fOXPmzJkzLOka0ivg+zt9QURKTm2Mwdew4E9vAvWMp9N2vxMQlSgrzKupLAMAUCmU5/cuZSXHAQAa6xgruiOFhyODA5Cv+RkpwXQLDqYvWEWlUq86b2tubED2FH5x//KZXSti37/qGIzTrcAb71I7/Wc0a/5fr8VkzuLqitIrTluaGuqRFwV8LrkV52eNmTQVcfC55Bbkdb3TtngOQnTIs7snD7S1tiCb7Vw8sL6+pqqrjXQgEAQ43ukjJnMWXXHaSqVQ7Pf83pzTZu2uU9vtN0zXkZJXLS3IlZBXPnQtYJOl7qOLx4vzszi5eWme+iYz5NS0n/13ITI4gI0NX1tdvs39pst6WwqFAgDQNjC233X8wTnnFZMUJOWVayrLKooLptqtmGrL/N+z3fq9ZYV5oY/vhT6+R+QTrK+tJpPaNcdOWuV4EnHwuewmKa9isWhNx7ZLtjuVFuQ9uXXu5YOrXES+6opSQKVaLFrTca8bCIQeqDt9ZKKFTVVZMQqF1vv/tjAAAIOpc84Hfv7+6UNrS7OsiqaOgQkag3F58Dr5c4SYrAIvv9CCTY7IolA2PMcpv/DP716W5OcQuHn0TWYQ+QUXbHJU/f9WVnNXbZ9kaRsf+bamsoyLyKepP4m2VzpzQWMwW9yu2azd9SP+c3VZCZFfUEZFU0lLl+Zgar00Ny2p07ZYHNveCw9z05LSE2Lrqit4+AS0xxuLSg/PDAuEiUDd6SMEbp5Ol1lLKqgwCISKzk+71TYAACAASURBVFjaCkw13d+bRmCwOIOpc+g9GU4oKCZpZmPP7MA7R1xWSVy28z1nJOVVGDYmZUBWRZNZ+1JARggwvwP5C2g0Gs6bIMwFjndGKHfcHTl5iFb2m7UNjLv3nGW/qQ/nD/K6/jX8dWlBbl8DhAxnoO6MOMxtl5vbLh/oXpD6OwPdC2SIAudZEAhksIG6A4FABhuoOwNO6tcob0+Xvi3UgkCGJVB3BhyknDvUHQiEBtQdCAQy2EDdgUAggw18js5MivIyv0e9b2qoF5GS1Te2YMNzdOpWnJ+VHBtZW1nOJySioTdBhG7v87bWlm/hb8oK86hUqqiU3JjJU5GV690f6jOx719lJcdZLFxDFBCiGRvqal7cuySnpoPsElFRXEBbrqE93oj+teaBCAkyEoC6wzS8PV18Lp9gZ+fgFxYrLczj4RM4cvNZxwUE3RR+z89IObR8RlN9naSCCpVK/ZmRyiso7Hz7haSCSjeHGM7fq3I8VCrV29OVHU+Yu2o7zRgV/MTb03XP+Qfdl5fveUgQCANQd5jDt48h3p6u5rbL1zmdx2CwpQW5+xaanty25FJQPL1b94XfvS4cI7e3X3+XihRjLi/K37fQ9M7JAwev+ndziCGSXpXj0TOaLiAq8TbgHr3ufHzpy8MnMHaKZffl5XseEgTCANQd5vDG9zYGi1u5zx2DwQIARCRlNx2/XPIzu6W5kd6t+8Lv1WUlKDSaHU9AnIXEpc89i+Hg5AIAdHOIgV6VeUdjMGbzlvlccvsR90l19Hhk6+Gk2IiZSzdgcWzdl5fveUgQCANQd5hDdkqCiKQs/a9Ol64+Bo3uC79PW7jq4v61m2aMnjjDRnu8kYb+JG5efqRhN4f6ibnNcr+rHqH+dxHdiXjlT6VQzG3s/1pefuBCggx7oO4wh+bGegFRib+6dV/4fcqcxWJScq+8rr8LuB945yIWx2Y4bc4qx5M8/ILdHOpn5IJikmMmmUcEBaw6eArPwfnxpZ+Stp60kvpfy8sPXEiQYQ/UHeZA4OKpq6r4q9tfC7+r6Rqq6RpSyOSs5Liw5z6vvK7VVVU43X7e/SF6+lDmfdp8hy8fgj+9CVTXM0xPiN1w9NcA56/l5XsYEgTCANQd5iCvpvPp7fPy4p9CYr/q/ifGhOf++G4yZzG9WzeF3ylkcn5mKpFfkE9IFI3BKGnrKWnr1VVXfHzl39bSXJSX1ekhUnsbFsdG30UfyrzrTp4mICoREeRfUVLAjidMnGGL2LspL88nKNJVtP24i5CRAtQd5mBuuzw65Nlt173bT91mY8dXlhReOrSxqaFuxuK19G4CohLFeZk1lWW8AsJUCuXFgyu0wu9tbS2OS8yVtfT2XnyE5ImaGxvyM1J4+YUoVEpXhxhEp2/bh6IxGHMbe7+rJwuy0w2nzyH8f7/z6QtWRb1+ctV52+6z9zk4uahU6ssHV2667F7ndN549sKuQurfjYSMCKDuMIcxk6cu2OToc/nEknGSgqKSpQW5BC7ufRcfYbA4erfuC79vdrlydreD/QRZSXllAEBhdgaOjW2bxy08B2dXh5gVv9k8e98r7iX52ZtdrtCM3ZSXR2MwAx0SZBiDolKprI7hHwKFQu0+e2+Cxby+NS/Ky0yIfNfUUC8sIaVnPAMZCKR+jUqIfj/VbiVS0b0gK42h8Htawmek8LuB+eyGupq4jyGVpUUoFEpYQnrM5Km0B9XdHGIK22aPa2ttvRwcz2Cnf1+Zobw8s0Ly2LpEnBvj5+fX74uADA2g7vxBP3Vn6JKT+n37XINVB04ib04PMlB3RhpwXSgE1FaWn9+/RkBUYiD254JAOgLzOyOaqrJi51WzS/Jz0Bj04etPulrICoEwF6g7Ixp+YbHzgZ9ZHQVkxAHnWRAIZLCBugOBQAYbqDsQCGSwgfkdRgLveEYGP2F1FCOLtITP4hMNWB0FZPCAuvMHNjY2A3r+L1++EAgEdXX1Ae2FuZDJ5PDwcFVVVTExsQHqQnyigYEB1J0RBHxvcPBISkrS0dHx8vKaP38+q2PpHdbW1hkZGQkJCWg0nJhDmADUncHDysoqLy8vLi5uyP1609LSNDU1//vvvyVLlrA6FshwAOrOIBETE2NgYPDq1avp06ezOpa+sHLlyvfv3//48YOdHe4YAekvUHcGCRMTEyRRwupA+kh+fr6ysvLp06c3btzI6lggQx6oO4PBq1evLC0tIyMjDQ0NWR1L39m+fbuXl1dmZiY3NzerY4EMbaDuDDhUKlVXV1daWvrp06esjqVfVFRUKCgo7Nmz58CBA6yOBTK0GWIJzqGIt7d3QkKCs7MzqwPpL4KCgtu3bz958mRlZSWrY4EMbeB4Z2Bpb29XV1c3NDS8e/cuq2NhAg0NDQoKCsuXL3d3d2d1LJAhDBzvDCw3b97Mz88/cuQIqwNhDlxcXPv27btw4cLPnz8H4vwnTpxAoVBfvnwZiJND/h2g7gwgzc3Nrq6u69atk5eXZ3UsTGPjxo1iYmLHjx/v9Gh8fDyqa0pKSgY9Xsi/CFwnMYCcP3++urra0dGR1YEwEzY2toMHD65Zs2b79u2qqqqd+kyYMGHOnDkd7Tw8PAMfIGQIAHVnoKipqTl58uSOHTtERERYHQuTsbe3P336tJOTk7e3d6cOo0aN2rVr16DHBRkywHnWQOHu7k6lUrdv387qQJgPBoM5duyYr6/vt2/f+tA8KyvL3t5eWloaj8fLyso6ODgUFRV1dKNSqWfPntXR0SESidzc3KNGjfL09KQdLSsrW79+vZSUFBsbm6io6JIlS3Jzc/t3WZDBA453BoTi4uKLFy86Ozvz8fGxOpYBwdraety4cQcOHAgKCupVw+rqamNj49bW1sOHD8vKyiYnJx87duzbt2+xsbFY7B//G93c3A4cOLBly5YpU6ZQqdRXr15t3ry5qalpz549tbW1hoaGVVVVBw4c0NLSyszMdHFxGT9+fHx8vKioKLOvFTIAUCEDwPr168XFxRsbG1kdyADy4cMHAMDbt2/pjXFxcUjuuatWT5484efnv3HjBs2yb98+AMDXr1+pVKqbmxsAIDY2lkqlGhoaysvL07d1c3O7ePEilUo9fPgwACAkJIR2CHkEtnPnTmZfJWRAgLrDfLKzs9nY2Oh/WsMVc3PzsWPHUigUmgXRnU6RkZHp9CR37twBADx+/JhBd+bPn49CoU6dOlVVVcXQRE9PT0BAgMGooKCgra09AFcJYT5wnsV8Dh48KCsru3z5clYHMuC4ubnp6+sHBgbOnj2b3m5gYGBlZcXgTCQSkQ/e3t537txJTEysqqoikUgkEgkAQKFQGPzPnz9fWVm5a9euPXv2jB49eurUqcuWLUOeoOXn51dWVqJQKIYmvLy8A3CVEOYDdYfJJCYment7e3t7M2QrhiW6urrz5s3bt2+fpaUl/fWOGTMGmT115MyZMzt37jQzMzt79qyUlBQejw8ODu70VQMREZGQkJC0tLSXL1+GhoaeOXPG3d399u3b9vb2KBRKXFz81i3GvdgxGAyzLxEyMLB6wDXcmDFjhq6uLv3UY3iTlpaGxWLv3r2LfP1rfkdRUVFUVLS9vZ1mOXHiBADAz8+PYZ7FQHFxsaqqKj8/P5VKHTt2LIFAIJFIA3NNkAFnyP9NLi8vT05O7sZBSUlJQkJicIKJiIh49erVmzdvOk4BhivKysr29vaHDx+eP39+T0qCtbW1EYlE2uCoqqrqypUrHedZtbW1K1asmDt37tKlSxGLqKiovr7+w4cP29raLCwsPn/+7O3tvXjxYuRoWVnZxIkT9+/fv2IF3Gp5KMBq4esvfn5+3V8g8gRkcDAyMpo8efKgdfePUFBQwMHBcf78+Z6Md+zt7QEA+/btCw4O9vT0VFRURJZcrFy5Micnh368M23aNDwef/DgwWfPnj179uzQoUM4HM7GxoZKpVZXV8vJybGzsx85cuTFixc3b95UUVEhEolpaWmDe+mQPjLkdaeqqiqWDgUFBS4uLnpLWVnZ4ETy/PlzAEBUVNTgdPdPsXPnTiEhobq6ur/qTkVFxaJFiwQFBQkEwvjx44ODg8lkspWVFR6PNzc3p9edhoaGvXv3qqiocHJycnNza2pqurq6NjU1IecpKSlZu3atpKQkDocTERGxs7NLTk4exCuG9IvhVgdDU1OzoKCgpqaG3pifn5+dnT1hwoSWlpbU1FQNDY2ysrK8vDwkTYD4NDY2xsbGysrKysrK0hpmZWWVlpby8/OrqKh0P3WiUCi6urpycnIBAQEDdnH/LpWVlfLy8rt27Tp06BCrY4EMBVgtfExGQ0ODSCQyGJG/ouHh4YKCgsj7ZkjFvNTUVJpPYmIiAODIkSPI148fP9IvepSSkgoMDOym3/v372MwmKSkpIG5rCGAs7MzNzd3aWkpqwOBDAFGxPosHA4HADhw4MDixYsDAgI0NTW7909PT582bRoHB8eXL19aW1uTk5Pl5eWtra27eimuvb3dyclp2bJlGhoaA3MFQ4AdO3YQCAQPDw9WBwIZAowI3UFe65CQkDh37tzcuXP/uoTn9OnTTU1NPj4+urq6bGxs6urqyMLrs2fPdup//fr1nz9/jvApBhcXl6Oj46VLlwaoJBhkODHkn6P3nI5v0HZFeHi4gIBAYWFhYWEhzSghIREVFdXRubGx8fjx4xs2bJCTk2NesEOSdevWnT9//ujRozdu3GB1LJB/mhGkOz3f3ruioqKystLExITB3un+LefOnWtoaOjq9dwRBRsb2+HDhx0cHHbs2KGmpsbqcCD/LiNinoXQ/cKFtrY22mekLkxzB8rLyxla1dTUnD59eufOncOvuFffWLp0qaam5rCpJw0ZIEaQ7tCDaFBLSwvNkpGRQfusqqpaWFjY3t6Op6O8vLzj+7hubm4YDGbHjh2DGPs/DRqNdnJy8vf3j4mJobcPs9c1IP1khOoOsnLi06dPyNfGxkb6nPH8+fPb29vpS5fHxMTIyckxbN5SVFTk6enp6OgIywbTM2fOHAMDA/ose2ho6NixY+mTZZARzgjK79Aza9YsHh6eHTt2REVF4fH40NBQBweHmJgY5M/yypUrAwMDPTw8YmJi9PX1S0pK/P39tbS01q5dS38SpJzgunXrWHcd/ygnTpyYPHny27dvubm59+7di1QIS0tLG7SFcpB/nOGmO/r6+vQvHCNISkoaGRnR6r8giwy/fft27ty5rKwsIpF44cIFMzOzkJAQ5IeBRqOfPn3q6+v78uXLhIQEfn7+M2fOLFu2jJOTk3aGjIyM//777+rVqxwcHIN4fUODSZMmTZw40dbWtqamBpnSYrHY9PT0KVOmsDo0yD/BcFsnMWgsWLAgPj4+KSlpJNTZ6RUFBQVHjx69desWCoUik8mIkY2NbcOGDV29AAUZacDfTF/4/v27n5+fn58fFB16KioqXF1dL1261LGuRVtbW0pKCutCg/xbwPFOX7CwsKioqPj8+fPIqbPTE44ePdrNE3RJSUn4KjMEAf657jUfP34MDg4ODQ2FosPA4cOHiUTi9u3bO/1jVlRU1NLSgsfjWREa5N8Cjnd6zYQJEzg5Od+8ecPqQP5R7t27t2LFCmTZMcOh5ORkdXV1FsUF+YeA453e8ezZs+jo6OjoaFYH8u+ybNkyIpFoa2tLJpPpszwoFCotLQ3qDmTkvjfYNygUypEjR+bNmzdu3DhWx/JPM3v27NevX+PxePq8Ow6HS0tLY2lckH8FqDtdQqFQvn79Sm958OBBUlLS0aNHWRfUkMHExCQsLIyLi4smPRQKBeoOBAHqTpfk5+fr6+vb2Nggv5a2tjZnZ+fly5fDldY9RE9PLyoqSkBAAKm7RiKRkKKOEAjMK3fJ69evp0+fjsViKRTK8uXLZWRk3Nzc0tLSpKWlWR3aUCIvL8/ExKSgoKC9vZ2bm7uuro7VEUFYD8wrd0laWhoOh2tvbwcA3L9/v729XUtLCz4G7i0yMjLR0dGmpqbJycn19fUVFRVIlWvISAbOs7okPT2d9hlRnx8/fsjKyu7btw/+0e4VIiIikZGRBgYGiJqzOhwI64G60yXJycmI3NBob29vbm4+ffq0nJxcx825Id1AJBLfv38/d+5cejWHjFhgfqdLxMTESkpKOtoxGAwHB0dQUNDEiRNZEVeXFBQUbN++ndVRdAeFQqmpqeHn52d1IMMQOzs7W1tbVkfRU2B+p3MaGxtLS0s72rFYLA8Pz9u3b0eNGsWKuLqjtrbW39/fzFCPm4vA6li6hIgF5LoyVkcx3AiN/KKhoQF1Z8iTkZHRcSSIw+GEhYXfv3+vpKTEorj+jvve9WqKjBWIIMObMVYOrA6hd8D8TuekpaUxLPvE4XAyMjKfPn36l0UHAhkSQN3pHOQhOu0rFovV1NSMjo6WlJRkaVwQyHAA6k7npKWl0WrlYbFYAwODsLAw+OIJBMIUoO50TlJSEqI7GAzGwsLizZs3nW7aB4FA+gDUnc7JzMxESjesWLHiyZMn8DVlCISJQN3phOLi4qamJgDAnj17rl+/jsFgWB0RBDKsgM/ROwF5mOXh4bFr1y5WxwKBDEP+0J26ujpYeRsAEB4efuTIEQsLi+Tk5EHrVEpKCu472imnbj46fPZmhO/lMRoqg9ZpVn6hlsWynQ4Lju1YPWidjhz+0J3g4OD58+ezLph/Cycnp8HszsfHx87ObhA6ComInb123+HNK/atW8JwKDw2YfryHQc2LDuw0X4QIhkhNDQ1u16+F/A6rKS8UpCfd+aUCU5bVvDydPKY4lty2kS7DR3tL26enGIwZlCCHSQ6mWfpHHvHikhGNAmH4EaawxMKhTp33f5P8cmr7GbpqCml5+Rfefgk9nvqB6+LuA6br9XWNwIAls+z0FZVpLeryEsNbtQDTie6QxAfvNEsBDIMqG9sehz04e6ToMeXXPh5/5gsB7wOi/yaeHLfxo1LrRGLprL8qv0n7j8JXmk7k+E8tfUNAIC5U43MJ+oPYvgsAD7PgnTO2ds+BA3T/KLSoxf/U5qyQEB3hq7VyofPfu/eU15Vs+XoOaUpC4g602Qn26zc65pXWELfNvtn0Zaj5yQM5wjpWVqt3ltUWpFfVDp3vaOw/kzZyTabnM42tbQi/i6X7xE0TFMzc3e4XJSdbMM7aprenFUBr8M6DexncdkaR3d5YzuizjTpSfMWbnVKycgBABz3vEPQMH0X/Y3eOSY+haBheuTcre4DBgC8jfo6wW493+jpUhOtNxw+VVff2JO7FPUtae0BD3kj2+0uFyRFhTnw7AwOT96EseGwK2wtaZb5lqY83JyPgzu5OmS8w8PF2ZOuhzTweRakc7BYDABg+/ELAICj21eRyOSzt7xXO7orykiOG6VeV99osmhzVW393rWLNZTlsvMK3a8/NFq4KSbguoggP9J269FzkqLC5w5u/Zacdv6O3/rDp4rKKmZNmbBolvnTkPDbfi/EhPiRRBIbDgsAWHPAQ0ZC9OS+jdW1dadveS/deYyPyG0y/o+8RllltdHCTQ2NTfvWLdVSkc8tKHa9ct940eZIv6vLbSxPXHtwN+AVfSrEL+g9AGCZ9fTuA05Oz5m3wVFYgO/Cke2CfMTg8Jg1Bz26uTkl5ZUPA0PuBQRl5BZoqSg4b3NYOMucj9hJyub7jywVeRkCnR5hMGgdVcW4lIyOznUNiO78u+UEmAXUHUjnoAAKAECmUJ5edUMskqJClg67Q6O+jBulfuGuX/bPot/5TkM9fW21CXbrz/3n67Z7HdKWn5fnyrFdAADbGSYRX76HRMSe2LN+i70NAGDmFMPX4THhsQkHkL5QKACAAB/xwZnDSF8mBro6lvaX7gcw6M65/3xLyiufXTtBm4kYjNEcO3f1yesPr7vunTpp3PO3kTV19UjWlkKhPg7+MElfR0Fa4rjnnW4CvvTgcVs7yffisVHqSgAAC6PxW4+dT07P6XhbaurqV+13f/0xhotAsLOc8p+HY/dP2YrLKgx1tRmMwgJ8NXX1La1teHY2enttXQMA4FXYp1WO7unZ+RgsZvwojQMblulrD7etBOA8C9Idi62m0j4ryUoBAKpq6gAAweGf+Xl56EcWozWU5aXE30b93vlnttkk2md5aXEAwGyzX5XSOPDsYsKCVbV/lIudb2lK15ekoozEl8QfDPG8jfrKy8NtNkGPZtFUlpeTFAv7HA8AcLC1bGlt837xFjkU9jmutKLK3trirwF/iksW4udFRAdhjvkk0BmVNXWvPkSbTxyb+ubB+UNb//pov6WtjZ0Nx2BELK1tbQz22oZGAMCl+wFTxo9x37t+ubVF1NdEs6XbIr58776XIQcc70C6Q1zk91JYHBaD1AwEAPwsLq2qqSNomDL4E7m5aJ9FBH/XFWTH4ZC/8zQLGxuOQvmjwpGMhCj9VzFhweyfjL+3wtJySVEhhhIlEqJC0XFJAIDpk8dLiAjdDQhat2gOMsni4SLMmTr5rwGXVFRLiQl3deH0CPIRZ5lOCPrwSW3qkgUzTZfPm6GjptipJwIHO3trWzuDsaW1DQDA0WHxzXLrGVMMdA1Ga9Cesi+YaWa0cNPBMzc+eF3sppchB9SdEQeBAw8AqK6t73iopLySQTsYfuH0djFhgavHdjPY0Wg0vU/HVt0ExlBojUqldurf1s74M6ZSqcjMDoNB21tPd71yPzEtS1VB5umbj7YzpiC5lZ4ETA+ZRO7UTuTm8rlwtKyy+uGzN/cCgq89eqajprhi3oz5M03p7xsNMWEB5K7SU1xWKcBHRLJa9Ggoy2koy9FbRqkraakoxCUPt6LULNad8ij/tpoSiRmbmOgJ6R55KXEUChWf2kle83NCKgBAVeHvG4RJi4ukZORMMdDFYJg2VS8qraD/WlJeST8+QpASE87KKySTKfT95heVSooJIZ+X21i6X3/o+/KdwRjNmrr65fNm9CRgIX4igzrkFnZSWpuGsADf9pXzt6+cHx2XdPdx0IHT1/edvDrHfNLlo7sYUjZjNFSevAlvbG7h5Pg1umlta//+I9NQV6vjaX9k5zc2Netq/jF363SmNtRhcX6nPMqv8JUncz17SHNxRsm7O4WvPCs/B5JbGpjo/I8jJixgaqD7MTaBlgdB+BibcMM7UFZS1GS87l9PMm3S2KaWVuRpEUJ5VY32jGX3ngT3OTD6B+c5BcVZ+UXjR2l07LehqfnVh2iaJfZ76s/iMrMJv9LMkqJC5hPH+gd/8Hn5VkNZjvYb7j5gPS3V8qqaeLpnTN4vQnsSs8FozavHd2eH+Z1x3Jz9s7ipuYXBwXaGSTuJdNPnOc3yn//LxuaWBTPNOp5ti/NZ82XbcgqKaZbouKQfWbmTx/5zxbz7CYvHO8obrlNJjMPmfnr2hDzfY0VvrqFxeCwnsa2mlI1HSHXrXU4ZxucOfXAeElw+tmvK4s0r97p6PXujq6WCQaMTfmS9+hDNy8P18MyRngxhNi2b9zDwzfpDJ7PyCnQ1VUoqqs/951NWVWMwWrPPUaXn5K87eHKW6YT6xmbXy3fRaNRmexsGny32tl6BIasdTzhusFdXlEnP+ely+Z4AH3HPmsU0n1V2M202HvxZXOq+5/eag+4DXrtwts/Lt9YbDuxevZDIzfXyfdTP4s6Lz9fVN77++LmjnZPAsXGJdceK+pYmhuYT9Q+euZ5bUDxKXSkxLfv6o2eT9HWQJDqJTObRnjpaQznS9woA4MiWlbNW75myeMsqu5niIoI/svJv+T7n4iQc276qz3f134TFuoMlEJnu+VcqYp4Wvb4qYrxUdoEzGsfeXJyRcmZR2qXVo10jUFjGAW2vnIcKkqJCsU9vnr3t8+J9dPS9xwAASVHhrcttty63pU8GdwORm+uDl+cxzzt3Hgd5XPfiI3JP0td5dN5ZSbbvdWDPHtrqH/R+w+HTtfUNSnJSj845dRzv8PPyvPe6ePTCf2dv+1RW1/Lz8kyfPO7gpuWSokI0n2mTxkmICJVXVS+c9XtM0X3AY3XUH51zPuZ5Z//Jq1ycBEtjg4dnj6iYLWztkEsqKCmz3328q0sonvSsY5bH+7zziasPfF6+ve33UkSQb9OyeQc22qPRnaSuJuhqhdw7d/KG123/lxVVtQJ8xDlTJ+9fv1RBWqKX9/Jf54/9s3x9fefPn29wq5C5fZBbGqrj37RWFbILSPKPnt5WU1oe/VhwrBWHmBJ91qY8+jG5uV50yvLm4oya5HBAoRCk1Ihqv568MjG/k+Rq1VKer3vqCwrzS3bLo/0zb25VXndVQH9Wf5z7TLSDRP/XhSYnJ2tqan59dmvI7SfB3BXnzS2tKuaLzAx1b7s7MiO6IcAYK4f5S+wHeSVzfxjw8U5LeV6y+7y2mhK8sBwA4OeTkyImywoCz3DJjeYQUyqP8mvITUDUpDL2edPPFBQWl+t1iF1Ipr2ugtRQJTjeWmn1RSS/Q/Okh9LWXBh0uavexUxXYLn4//Rvqc+OExw7m6YjAABeTRMAQG1qBIOU9MoZ8o9w4a5/ZXXt5mWMczTIv8OA606ez9G26mLlDdcFdC0BAKVhD3K9nQAAqA7jTBQa3V5fUR7lP8YjBscjRKWQUs8srvgUIGW1Ay8i18XpAYXUVh7p29VRIQMbBt1pKc8FVApe5I8RAY5bAIPnainNZmjeK2cIa2lqaQ2J+PwpLtnz/uMVNpajNZRZHRGkSwZWd6ik9urEt9yKeojoAABEjJZUfHpSl/6pU39Ke6uMzQEcjxAAAIXGCujNrE2NaC7J6kZ3sATiGI+YnodEbm4AAGDwjEtpMBxcpKa6/jhDWEt1bd2qfSewWOy6RXNcdq5ldTiQ7hhY3WmtLKCS2glS6vRGXk2jrnQHAMAp8/u9BgyBBxEjpgbVxX7wVCro5C21XjlD+siuVQt3rVrYz5NIiAiVf3nJpIggA8vAvr9Dbm0ELmIdsQAAIABJREFUAGDY/1jXj+UW6MofhcagcYyVBJgL8lyM3Mw4WiE113d8ZNYrZwgE0kMGdryDiAil7Y+XqUiNNUzsord5ZXZhWRQa01L6x1LjtuoSSmsTh6gCQ/NeOUMgkB4ysLrDLiAJUOjm4j9eya9N+cjELnqbV0Zj2biVxtamRlBIbWjsr1faqxNCAABEDSOG5r1yhvQEbm1zCyMD34tHmegJGXIM8HiHjYNHeVxdWnTtjyiiqiHy8ktDTjwTu+htXhkAID51zY+LK3IeHpBbdByNY2/MS/z59CSHmBKfjhny4L88yp9bUY9Xw+ivzpDe4mA3S1Opy6cEffPsCR9i4k5cuR+XkkGhUDRV5HevXjTD2OCvrZLSsyfYrufmIhREPqEZn4aEX7jjn5aTT6UCJVnJtQtnL5xl1v2SVwgDA/4cXXb+keSTtqmnF3CIKwMKBQAgabklz99loPvtBr5RUyWtdhQ8P1fx6QmWk9hWXcIuKK2y8SYKjQEAtJbnFwSeEZ+2FtGd7p0hveXcwS1M9/wrIRGx1hscVeRlDm9egcNiHjx7Y7vp0MOzh+eYT+6mVTuJtNrRvZ1Eoje6Xb1/7OKdOeaTt66wRQHUkzfhq/afSEzLctu9jlnRjgQGXHc4ZbRGu0ZUxb8mNVTjReT4dMzLI3wAACgMDgAgZGhLVP9VYElg7GxO6T8W6RIkVCStdhDElRg8+4/U7J1C4+fWJIeRWxrxInJ8WqZotl/LhdmFpCWtdnAr6vXEGTIk2HPispiQwPuHF7g5CQAA+3kzDOat2XPi8qwpE7tZjOZx3SunoNhk/JiEH5mIpbWt/fSNR1oqCg/PHkYGOFZmE7PyCy8/eOK4YRlyckhPGHDdobS3kpvrRCb/XrbXXJIFAGDjEwMACBn+fqlUcOxshrYECVWChCrymd6TKeBF5EVF5DuxC8lIzd7ZQ2dIRxqamg+eufH0TXhdQ6O2quKx7atevo+6cNe/5FMgDzcnfdZGUHeG3UzTNfOt9rhf/paUxkngmDx21Ml9G0SFBJiY30nNzE3Lyd+3bglNF9jZcMusLRxPXYtJSDEc0/lC1qT0bI9rD087bgqP/Z0WqK1vaGpp1VZVoJ9Vaasqfkn8UV5VA3Wn5wz8+8p+x0ve3lbZeJN/jAUAoKkgtSzCm0NcGT4PGq6scfR4GhK+ePbU2WYTfxaXLdt1XE5SDCkwyOCJxWLSs/MXbXdaaTtzw5K5MfEp5+/41dY3Bl4/0c35n7wJX7zdudNDwgJ8ueH+DMaEH1kAgNHqf7y+PEZTBQAQn5Leqe6QyOTVju4GozUc7GbS644QP68gP29qZh69c2buTx4ugqSocMfzQLpiwHVHympHfWZs2qVVeBF5NAbXXJKF5eZXWnVhoPuFsIT8otKnIeHTJo+74boXsagryVmsYBw//gKFivqW9MHr4lgddQDAHPPJsd9Tw2LiSGQyFtNl+kxXU+Way55OD3Gwd/LyV3FZBQBARPCPEmJIRbHiMsZKgAge170ycn7GPrvFkC1GoVAuO9esO3hy+/ELy+ZOx2Ixj4M/hMcmnDu4pWPxQEg3DPjNwnLxaR96VZsa0VSYRmlvwQvL8Wmbotk4BrpfCEuI/Z4KALCke1RkNHaUmoJMalZep/7KclKI6CAoyUpFfUuqb2jqdE8YBGlxkaVzpvU8pJa2NgAAO9sfZQCRCn4tHSqrIzMs96sPXHetRYZpDCydM626tv7g6evXHj1DKqs6rl+6eoFVz+OBDFb9HRSaqD6ZqN7dswPI8KC0oqpjUXTVrnVHXPgPTyxd6XhmgQyCGDZvQCqrEzpUVkdmWHpaqusXz+30bFuPnb8XEOS01cHUUBeNRn2MTXA6f/t7WrbPBWf4KL3nwMEhhJkg1ZzQf/4Cu6qd/tdK70xBTFgAAFBSXkVvRGZYHTeNOHnDKyuvMPrxtU7rcsV+T73hHei4fukOh/mIRUtFgUSm7PO48jo8ZrrR+IG8jmHFkNedturi0nAvXg0j+iffEFaB7A5eWllNb0zLzmdiF73NKyO1xL4mpVn9f/cuAMDnhBQAwJgOtTKevvnY0NSsZbGMwU7QMDUYrYnM71QV/qiLoiwrCQBIy/kJdafnDHndaa0uLgg8g8Fzslx3yK2NNYkfWivyMQQeTikNLrnhVou7JyBVb95Ff0V2ywMAfIpPTkpnZq2i3uaVlWQlddQUHwa+2blqIbIFcENT853HrxRlJPS0VBmcPfZtYNgZ/fwd38S07Jtu+/h5eZpbWwEAkV+/21gY0xw+xScjWScmXd+IYMjrzj9C9fd3Wbe3tddX4rgFSE21VDKJT8dMae1lhrX4wx5VeekJulp+r94L8vFOmzQ2v6j0zG3vCbpakV8TmdVFb/PKAIBT+zfNWLnLZPFmB1tLNBp92+9lYWn5k6tuyCzP+cJt92sPH192sTAab9Rh5wa/oHc/svNnmU4AAJDJlPGjNG74BFIBmDJ+DBaLifqW6HnvsbaqoqWJIbMucCQAdYcJtFUXp19dixeS1nQMxAvLUknteX7HikNvFTw7LWN3mNXRDTZe55x2uXk+DHxzLyBIV1Pl/unDV72eRn5NZGHadYKuVvCd08cu3jly7hby8s6Lmyc7SsxfwWDQz2963PAO9H7x1vtFaEtLq7S4yIYl1nvXLobP0XtF/24WlVqX/qmpKJ3c0sBGFOHVMsHR1dYhNdXWJL5vqyrCcHBzSmtyyY9G7EhGRkB/JjufeNW3oLbaMg4xRT4dcxQa01pVWB0fQiW1cymM4Vb4tYtTa0V+WaQf/xgLvJA0Uh8exyPEP2oqw0JzGuSWhprE9y3leWgcO5fcKG5F/R4G3GdqksOo7W2y84/ghWUBACgsTmb+4bKP3jXJYTL9P/tQQ4if9+7Jg/SWsspqNhwWeXRd/z2EZi/5FMjQ9uKR7RePbEc+03v2H4PRmq9un+r00JEtK49sWdlVw3unDtF/5eTAb1tht21FvyrwQ/quO+TWxpRT8xty4jlEFTHshObSbGp7q+LqiwJ6MwEAVXHBGTc2owAKLyrfXl/ZVlUkMNZKec1lgEK111UUBJ5Bs+HLwh5SqVRySwOpoUpw3FzhifPTLq1i4xVpqy4htzbK2B0Sn7YOANBWU1oQeAZQyOXRj6lUCgqNba3Iz+PkVd/tx/lnJUMAQO2PqPQrayltzQQJFVJTXYu3E1F9ssqmmxh2zu4Dpqf6+7uGnLhOr5ogoSqgZ8lgFJ64QHjiAnoLCo1Fs3OgMGxg5OF0/lZbO8l1169Ko7X1DTEJKbDaMYSevutO2Ufvhuw4tR1eyLptSltzmqdD9v19/KOmUQE189Y2Nl5RrYMvsQQeZLVEUfCVSr2ZArqWAIUGABS98lRae5lX04RKJqWcXlDx+Wnjz2StQ684RBVIDdXxh6cUBV9BdAegMQCAwuDLiivPCY6bAwCoSfrw4/yynAeOmvuf0odEaqhKv7SKjV9MbccjNqIwskdF+tV1PwPcZRce7SZghp2wGnK+lUf6dXrVfDrmHXWnI1XfgtrrKkSMl/b59g5dmlvaLt7zr6iqsTKbWFvf6Hn/cV194+7Vi1gdF+Qfou+6015bBgDAsP9aC4dm41DecB2gUCgsjtxUK2N7EC8kjYgOAEBogm1R8JXG3ERagXdupXHIhjAoDJZ/1LS6tGjBsbORRVtYLj6i6oSKmCfklgYM/tcuaNwKeojoAAB4NY15NY2qv78jNfzxvLYi5impqVZx9UVEdAAAAvqziGEPyiJ8ZOYf6SZghkuTmr1LavauPtyTqm+vGrLjmwp/1KZ8FDFaImHJtEoOQwi33euEBfkePn39+HUYGoXSUVMMuOwCnzFD6Om77ggaWJe8u5NyeqGA3kyi+iSi+iTarx1LIIoYLWkuySqP9m+vq6CS2pDapuSWelpz2kJzWv12gsTvoTgiWFTS73dMaekeBA4J1erv71rK/3gLtiEvEQBQmxxOX1qM0tpEbmloLc/vJmBmUf39XXm0P5XUziU/miCpiur6fblhDBqN2umwYKfDgh74QkYofdcdgriKjnNIccjNqrjX5VF+AAAe5fGyC5w4ZbQobS0Z1zdUxb1m4xPlEFVAsxGoFDJDczT77yVayJOOPxZtdXj2geH4Y8EOho2AzJVQdHXgKS2NAIC6jM+oP1cV/o+9s4yLqmnD+GwHGyws3Q0CSqmgGIBdCA+Khd0tduNjB8aj2IEtiC2KrYhigYiIdHc3bL8fju+6LLASiys4/58fODOzc+6DcHHOfWaum6JvLeBzJQTc6m+CGAZT9xlM3cepKCoMv5F21afsW6jponPSmhwC6TS06X0WgamtO/5f3fH/1uWnlkQ9yg4+/P3AROudb/JfXiz5/EjbbbXG8EWIgtQVpn9e06YFDtyactFDpFIFmlBP0RBtMp5ztKl6W00FLCZqLc0rc2sqOOUFJDVD5BBHY6oPnlObE18QFlBXmE5U+gtfakEgkmj9g0BdYXptTgLyNVFFT33wXG2PdZzK4qq0L1UZXwEAKs5ThLct5d/D2hhoTcY30cPanASAQpPqe3Ehdy6VyRGijWUxL6szYyUHLHauqtTIwjeBjf6riA9vGFt6gE/Uhn41OfH1WtEYAACvrrrheIgU2Xf6KtncJfJbfDPGQv4UWn+/k3J+VW1esvmqIGTRChDwq1I+AwDw8qoEhhoAoCol8v+lxN8UhF4BKFRbamyWx70p/fIUcVOvSHhXFvOKbuYodp/C7OGaeWt35h1fqoEtcstTmfgh4ehs+W4uxnOOSQhY7FwtzSszHTwK3gQmn1tuPOcogakNACiNelz07iaeoUbWMGn1JUM6CpHf4h3Hzm/Yfv/0XmcHG1lE9KfTet3Rm7g9dv/4z+v6kNQMMQQyqyiTW1Ou5bqcpGao6jy1ICwg7r+pctoW3OoyPofVxftKwon5JZ/uJ3DZ6oNbU0NWpd+klItrMIFkNJ5YkxWPpcjrTRB3wMRSGMbzTyUcnxu1sT9JzUjA59XmJFD0rfUmbJMccKu/CQh00156E7alB22PXO2AoyryWDV8di1RWcdw1hFo//43UF5ZDQCY+s/Qrqb1fpZM9LVkF9QfTet1h6RmaLMrvOxbaF1BCp/Dwsur0M364OVVkDSK9Y7XJVFPOBWFBEVNhtVADEHOdMn54o/30HgSnqGmOcqbZtxTOBVZy1xzlDdR+WdSRt7SBUtREM00E5jaVltflEQ9Zpdkq7pMV7AZilTsJDDUNEd5Uw1+bAqlmzna7H73Y70yniinZU4ztkce9yQE3HZUnacye7iWfw9jFWeh8SSisi69Sx8oOn8J5ZVVAAC3Qf0GOnZvxnBI2/LKKAyW0dUZAOdG5qUoKDt6irYQFDR+rAMEQMw4XU7bXE7bXLSF0dWZ0VVsWgGGRFVy+EfsRHiGmthsGCJFsfvIlgbcdrAURlPn7ZQIBIIjF29cvPUoIyePzxfoaalP8xg2d8KPNVYpmTk7j1189f5zYUmZClPByd5m06JpiBXOgbMB631PxoRcPHgu8EbISzab42BtcXzbSi6Pt2TroTefoskk4gjn3nvWzCcTCQCA7UcvbPc7H3HnzKmAezcfvSqrqDTU1Vo3z8t9cCOlEwtLyrYe8X/48l1BcSmDTnV2sNm8eLqOhuovA24LyP0OjfJ37QFuC3AzG6SV7D111efQmfmT3Pv3tBIIQEjoe+/th2tqWd4zPMsqKgdP8WZxOOvmeeloqMYmpSE188ICj2IxGMRUcMm/BzVVlQ9uWBL5Lf6Q//V5m/blFBSNdO49YeTA209Cz16/r6aksH7BFAAAsuVy9vo9Ohqqe9csKC2v8D1zzWv5Vgad6mRfL3tSUVntNGFRSXnl6jkTzY31UtKzd5+83G/8wvc3T6owFSQELHZptq4zvielNXrV/21aOtNT/K9LRRWiO7CeRHOBugNpJSGv3ulpqu1buwA5HOnSW09LjUwiAABef4yuqavb7j17qscwAMDQfvblFVX7Tl+NiU+x6mKEAijEIezY1hUAgDHDnMI+RT8J+7hr1bzFUzwAACOcez0KfR/68ct6AITLuxQZ9Ev7f2zud3Kw7TZ8it/Fm2K689/56ymZOT+zub3sunc16z123sFzgTtXzpUQsBhblkwvrahq9Kp7dhPfEggAKK+oAgA8ePVu5rrdCSkZGCzG3sp8/fzJ3buate173GnpALojlsGB/CFoqim9/xJ7yP/6FPch8jQqAGDFzPFI10iX3ohhjRBjfW0AQHpOnlUXI6TFdcDPKoz62uoRMfGu//cDJBEJasrMkvJ6bz89h7sIvzbS1TTU0fj0NU4spJDQDwryNNFXSNbmxvpa6s/eRkgOWIwRzr0bbW+K8qpqAIDfxZsTRw2cMWZ4Qmrm2evBA7yWBp/Z62jXtUVT/SV0AN1pmMGB/AnsW7uwpKxi7d7j631PdDMzGtDLboLrQBM9baT3+oMXF28/+paYUlpeyeXyuDweAIDPFwg/rsL8aWNCwOGEtWUQ8Hic6GAAAJKjEaKmzEzJjBYLKTM3v6SsgmzuItZOp1J+GXBbmOo+zNnB1sHaHJEzAMC4EQP6jV+4Yf+pl1cOt33+zkcH0B3In4myIuP+6b0JqZkhoe+fh0f8d/6675mrx7etmuQ66L/zQWv2HHN2sNmzer6mqjKRgH8c9gHx3BLS0AZMsjGYQCAQO2x0BjVlxeNbV4q1I8byEgJu1TfgJ+bGeubG9ZbIW3UxsjQx+PwtoY0zd1ag7kDahLGelrGe1uIpHvlFJUOmLl+9++gk10Gnrt1VYSrcPrFLWH7v6dtPbTxRTn6R6GFeYbHo/RGCtrpKbGKqs4OthKrnjQYsNqaleeW4lIzqmlpbi3prROvYbEKDEqkQhN+qO98PTKxI/NDzaOLvPGlDEk8tKnp/m2HpBAAwmLYfR2MCAGpzE8u/v+HVVRGZ2vJdnYX+G82hOv1rVXo0r7aSoKglb94XWUWdcnENuySnKi1awOd2PxTTnhckAyoqq2dv2DPKxXHCqIFIiwpTwdbS5Nr9p2wOl83h0KlyQtEpLa88de1uGwtj3Xz0aswwJ+Tr1Kzc5Iyc0QP7iI0Z3KfHp69x1x++GDfix6NWYUmZy6TFK2ZNGD2gj4SAxVxKW5pXXrzlwKevcRF3zwpL/YV/jolLThvSF7p/NM5fer+DxmBNl1wQHqYHbs15fAKNI2Ll6OyyfDxNyXTJeTmdX2cE+Vx24on5JZEP0TgCmkDmVpViKQz9ybsVbYfre+0CAMQfmV6R+KGdr0YG0KhyNbWshT77k9KzkL/zkTEJ1x+8cB3QB4/D9uthdenO400HTvft0S05I+fIhRvTPIZv+e/s0zefGpZwaCYJqRlzN+wd6dK7srp2x9HzaDRq0RQPsTELJ/9z+e7jeRv3Jqdn2VqY5BWVHjwXUFBS5mBtITlgsXlamlfevHj6yFmrnCcunjl2hLoKMy4540zgPYoceeuyma272E7PX6o7ohS9v53z6LhKfy/dcVvQOEJtbmLs/gnxfrOsd4Q1tAQTI+P6tpLIhzpjN6kNnIlCY6ozYr4f9Eo6vZhmbC8V5+Y/mauHfHYdu3jz0avD54PQaLSWusqGhVMWev0DANi1ah6Hyzt348HRSzctTAwObFjk7GD36WtcQPCzrLyCwX16NmN6cQ5sXBL08MX8Tb7llVVGelpXD/rYW5mLjaFTKS+vHNl6xN//xsM9J68w6NQ+3btdPbTFSFdTcsBtpLet5ZMLB/eeunI2KLiopFyRQR89qO/aeV4G2hptn7xT0mLdyXt+js+qVR9abxdcVcrn0q/PFbuPIKubIDvCazK+8eqqCIqa8pZOYrs3EQrCrnGry4QrmAEAValRpdHPlHuPJTB/7GqpzoipTPzAY1XjGeoMS6emjNzbSN6zsziakt6EbSgMFgBAUjPSdl+ddHpJyeeQX64/Lv3ylGpoJ9xxJqdtoTZgRsaNnZWJ7xVshrVHtH8OciTiVu9ZW71nNexSkKed27NOrPH6ka3CrxdOrvfbfnLH6pM7Vou2RNypl4QGAFDIxP82Lf1v01Kx9hUzx4u+DldWZAid4ZsfcNuxtTC5dqjxaoKQhrRYd2pzk/Oen5O3dCJr/lwTlXX/UFnMC1XnqXx2XdzhqeWxr4nKOhgitTY3EY0nmS46RzXqITZPwetrdQVp9XXnc9bd/XTTXgSmloDLSTq7tOj9bQJTG0dTrM1NSuHzDGccFNqkCuGza7MfHm0qWjWXaZLVis+uq0z5zOzhiogOwv+30Yf9Unesd70F9d+zYEk0AMDf6egOgTSTFuuOUi+PvOfnij7c1f6/7nBrysu+vWR0HYCjKmY/OFwe+1pv0g5VpykAAFZJdrTPoJSLa7v9+6xFZ8m6d6Do/W29idtVnacip4g7NCXp9BKqvi2eUW8dB5/LLnwT2GS0Dh6SdaeuMA0I+ESVepVncVRFDJFSl9+8Kpcib3P5HFbB20AsmSbz4qUQyJ9Mi3WHomdFUjMs/nhX2/3HjXHxp/sCLkep91gAAEXfVmfsRmFRF4KCBt2sd3HEQz67Do0nNvccAkHey4sU3W6I6CCGzToe62J2uRW9v6U+ZF69CyDTbfa8b+lVCOHVVgEAMETxJ0EMidJ8tyBudVnu0zOcisLS6GdoLM5kkT9WTr7VIUEgnZ7W5JWVHP7JuLm7Ov0r4u9X9O4WjqrI6OqCONFQ9W0q4sPrCtJ4dZUCPr+uMAMI+Hx2TfN1h1WSza0qETBUM+/4ChsRj/fq+q6D0kDQRLOgocdzU3BrynMeHeezazF4MqPnaKwcXZoB/vWIZXAgnYDW6A7T4Z+MW3uKPt6V07Fkl+VXJLxXGzADyY+URj9LOr2YV1clp2WOpSqisTikkkSL4NVVAQDY5YVlMS9E2yn61ji6UisClgBi4sOrFb+14dZWktSMmjkJUUmn59FEAZdTlfE1/ZpP9JbBFmtuC+ujQiAQMVqjOwQFDZqxffHHezoe64s/3AECPvKQxeeyk04twpBp3Xye4BXUkcFJp5cUFmU2Z1qhFTGSmqWbORrNPvLLT7Uxr0xQ1kWhMXX5qaKN7NI8PqsGKeYlAQGfyykrQGHxyMpDFBZH1bcxmnsscmWPvOf+hlB3IJAmaOX6HaVeY5LPeVenfy36eFdO2xypF8wqzODWlCv18hCKjoDHrUhsPPmCxuF5dVWijzPV6T+2+eEV1HFUxarUSCDgI8VFkWeZ8m+h8pZOYiuJ25hXRmPxVKMe5d/D+Fw2GvvjJVTplycAALp5I7ZSorDL8iNX9lC0G24876SwEYXCCG/ZIGIwrIc4OdjePLpdtmEYOnsiuy601VXinlxpj1PkF5Xo9RuDfD16YN8rBze3x1k6Lq3UHUW74amX1+W/ulSVGqU7zgdpxMurABQK2RmAQmN5rOqU86tRGBxS6UXs95+oalD+/U3plycMq0EAgOJPweVxP0s1qPSblHX/UOYdXy3XFQCF4rPrUi+tK/pwt9u/T5ElQj8voG15ZQCA+qDZcYenpV5erzdhGxpHqE7/mnl7L0nNCPGQZ5VkF7y+RtGzbuB/CAgKGjQTh+KIB/kvLyr3nYBCYziVxamX1wMA5C2d2hISpL3padXFd91CAu7HX5qbj14duXAjLiUDMdlY4OU+ZqiT5H2qQp69jfA9ffVrQgqHy9XXUp/lOXKy21BFBj0s8CgAYMhUaKXQCK3UHQyRomA9JD/0CgqNYfZ0+9FIoqoNmJn75FTkKns8Q7U2O0G53wQdj3XxfjMTjs1WGzhbdAZV56nFH+7GHZlOUjVA6hFru69OubBawOcDADRGLq3NT8m6dzD/1SWComZdfiqPXWMwebeY6EgFhtUgzVHeWfcOFr27hZWjs0vzCExtkwWnEXdkdnF21t39qs7TGuoOAMB47rG4w9NSLq5Ju7oJQ6ZzKotQKLSK02TlPjAP+kdDlZOzMf/xs7Tv9NVNB0472nVdN8+Lw+UGBD+funJ7Ymom4nYomav3ns5Ys9PMUNd7uicWi7kR8mrB5v3fEtP2rV2AzI9ueofq30zr90moD11AVNEnKKiLbgjQHeejYD24Ki0ahcHQjO3ltC0AAMbzT7IK0klqhkx7d6GdO1ndxHrH69LoZ+yyfIKipoLVIHZZvuYob4KCOvL4Yzz3ePWwRZWJ73msary8qrylc/vtPNByXa5k71b27RWvrpqoosewdBG+fcMratDNeotWNxUFR1OyXH+/MulTTXYct6acwFCjGtohpWwgHYLK6pptR/z7du/28JwvcoMzd8JoqxFTD54LXDVnIg4r6ReEx+Ov3OVnqKPxOuAoYgU9d8Joe/fZp67d3bJ0hhyp2QtH/j5arztyWl2QtI4YNBMHmomDaItwkTFFz6reuSkKSr3GCA+JKnq/9HtvP4gq+qr1qwAiEBQ00HiSZLdDqqHd37NQkGk7zNrc+MmFg6KNzhMXxySkpIYGyZGIZ6/fP3M9ODkjGwBgpKO5aIrH2GHit4pcHo/WdZDH0P4X9m0UNk5YuuX2k9Cabz+WmN5+EnrI/3pMfApfIDDW05o9btQ0D/HV6m2nuqZ246JpvWwshE9VJCKht63ltfvPSsoqRM3JGlJZXb3Ay93cUA8RHQAADou1t7b4npxeWFwmpylelw0iBO4L/QXcmnKqoZ2CVVutoToNowY4BgQ/z8kvUldhIi0ZOfnvv8ROch0kRyIitSLcB/dbPXsil8c7E3h/6srtOCzWbVDfFp3l+JXb3tsPD+1nf3rXGgwafetx6ILN+7PzCjcsnCo28tbj0InLGt8YpazISAsNknwiVSXF5TPGiTUmpWfTKGQlBXF/HzHkadS1c73EGhNSM6hyZKRyBqQp/lLd4fO4cYcmi/rvNAWWTNcYtqgVpxD677QhzD+RCa6Drt1/dvPRK+HezsDxZXY5AAAgAElEQVQHzwUCwaTRgwEA95+/NdDWuLBvIxqNAgAMdOyu1dvt8p3HLdKdyuqaTQdO97KxCPLbhtyGjHDuXVZR5Xvm2vxJ7gryNNHBthYmJ7avanQeEqERz3YJ8Hj8jNz8g+cCI2Li969fhFxCi7hwK+RNxNf18ydDxy/J/I26o2g79EepYgBQ2PbawEnWMMHRlOR0u2HwjeeGOihOPW3UlBWDQl4KdScg+JmupipiYP7s0iHRwVQ5spoyMz0nr0WnePMpuqqm1qP+GyWPoU4PX70L+xQ96v/27wja6ipeowe37ZoAAMA/6MH8zb6IkfP1I1uH9XdoxofqcfXe08VbDgzr77CmwU0QRIy/UXcUbIb9BpMKVedp7X0KmYDBoD2Huxw8F5iZW6Clpvw9Ke1bQur6BVMQjcgtKN53+uqrD1FZeQV1dSwuj8fnC8wMdZsx8U8ycwsAAN7bD3tvFzdFR7rag+5dzbZ5zy4qLXv2NmLisi2bFk1bNl28rlZTCASCfw+f233i8mS3IYd9lklwWYUg/I26A2kjE0cNQkp9Lp02NiD4GQqFmjhqEGJ+2nfcgoqqau8Z43p0M5OnUrBYzD/z1zdzWqFzOyJh3jM8+/UQX/NtpNteFcdFvdnnrN+z3vekvbW5g7XFLz/I5nAnr9ga/OLt7tXzFk0Wt0CENArUHUiLMTfWszQxQHTn+oMXfey66mqqIoXrsvMLD2xYPGe8KzKSw+WWV1ZTGxTwRaPQAAAut57dcnZ+IfKFtroKkrVtTrnxNuaVX77/fPFWyLyJbqIGrK4D+1y8/ehjdNwvdYfD5U5ctuV5eMQNv+2D+oibTEGa4nfozh9i5w6RIhNdB63de/zhq3epWblr509GGtkcDgBAgf4z73v00q3K6hpBAzt3NBpFo8oh79oRvielfY79UfWll60lhUy6cufx0mljhebwPofOvI2MuXV8p9i6mDbmlclEwtV7T2vr2KJbGV6+/wwA0FCR9MIBYd/pqyGh724e3dEciYQIgfc7kNbgOdx5ve+JlTv9KGSS8F1VLxtLLAaz4+gFLBaDw2LuP3+bnp03oJddWET0hy+xYlmeAb3sbj56tWzbf/16WmXkFJy8eseppw1S7oZCJvksmb5ip9/gKd4zxo5g0KlPwj6euHpnxtgRDRfjtTGv3KNbl/EjB1y993TY9BVD+9tjMZjXH6PvPH1tbqyHuLvvOn7p38PnLh/Y3PCVXHp23t6TV4z1tJMzspOvZIt2ufSyQ0ydIY0CdQfSGlSYCs4Otk/CPnqNHizUAkMdjfP7NmzzOz9jzU55GtV1gON1v23vor5FxyePmr368gEf0RkObliMx2FvPQ69cCvE0sTg9K41tx+HPn37icXmEPC4+ZPcVZUUj1y4seTfgwKBQE9bffeqeQu83NvjWo5vW2lvZX7+ZsiOoxf5fL6Wusq6eV6LJnuIvgvHoBtJFccmpdWx2N+T0hrmv8/sWgt1RwJS1p3KpI9VKZ8BAGRNM7qZY1PWWRKM3zkVRWXfXrLL8jEEMlnTjGbUUziJhK5Wk/fsLJ9dJ2ZTX50RU/L5kYLNUGRBtgR7+fYIqaNw58Suho1ug/qK3RcM6GUnTLKUfg4RtjMV5M/uruf9bm9lvmvVTzNJ98H93Af/whJAKuCw2FnjRs0aN6rR3jVzJz189U69sWeuof3shaurIS1CarrDZ9clHJtdGv0MR1VEE+RYRRlUA1uzZZfFiklINn4vDA9K8V+JxpOIyrrc2oq6/FSasb3pkvMYIkVCV/35W2bHU1eUkfv4FM20l+gejpyQ48Uf76n095JsL9/MkCAdmvDPMTV1dWK1QCFtRGq6k3nXtzT6meH0A4gHWGn087j/Jqdf36Y/ebfosNynpyQYv6dd3UwxsO2y/BriXlgeGxq7f0L+q8vqg+dI6BKdv6V2PCp9J+U+PlXw+qpQd/jsutKox/JdnfF05cxbeyTYyzczJMgfSGV1deS3eAIOL1bXvCEO1hYfb51u6fxcHi86LgkAwOe1vkRqJ0ZKuiMQFLy+StW3QUQHAMDo6qzvtQtDIIsNlGD8jvxio7F4xIACAEDv0tfONxJHY/LZdU11iV9PC+14SGqGNGP7og93dMdtQfagl355wmNVKzuOk2wvr+o8rZkhQf5A3kfFOo6d336+X8Wl5Y5j5zdj4F+KdHSHVZLNrSol1y9updJvUsOREozfsRQF5d5jC8ICov8drGAzjG7Wm6JvjaMrAwDQeGJTXW1Hpf+kxJMLiyPuKzl4IOVDcTQlRjcXyfby7RoSpF1Jeh7Q3qdQYSrA1I8EpKM7iK0nGvdrwxHJxu8GU31ppr0K3wZl3T+YeXsvVk5e1Xmq5ihvFBojoauNwSvYDsdSNha8vqbk4MGrrSz7+lx14EwUGvtLe/n2CwkC6dxIR3eQ5DGnsljysF8bv6NQSg4eSg4efHZtRXx43nP/rHsH0TiCxvDFkrpET9Fym3c0Fq/Ua0zuk1OskuyK72/4XDbyGPhre/nmhQSBQMSQzgY2AkMdS2FUpX4WLdpb+PZ6QWi9h2fE+F3BalCjxu98dm1l0icBlwMAQONJ8pbOpov98Qy10q8vJHSJRYLklZv6x62pbDR+lX6TgEBQ/PFe4btbVKMeSCWJevby/4dbU1788R6vrqr5IUFEYVgPcW/2ji1IZ0VKeWUUSrnP+JyHR3MeHUfqeVbEhyefX8mwdFHuO0E4SrLxOyc3KWaXm8aIxVquK5BHldq8FG51KdWoe3X616a6xK+nVTbvJFUDmolD/qtLrMIM/Sl7he0S7OV51eXNDAkCgYghtffoWqOW12bHp1/flv3gCIZEYxVlkDVM9b12io75pfG7+uC52cGH819eIipp81m1NbmJJFV9bfc1RCWdprqkFb9Kv4mJJxdiiBRm95HCRsn28u0dEgTSWZGa7qDxRNMlF5D1ygKBgKxuJG/RH6l+JWrnLtn4XamXh4rT5Ir4cE5FEYZIIakZ0k17IyuAdcZubKpLKshbOAEAmD1c0SLv/iXby7d3SBBIZ0XK+ySoht2phuIPGkoO/4geSjB+R2r+EpV0Gp1cQlfbKQwPAgCoujRi1iXBXr5dQ+rQXLz9yO/iTcRsuJeN5eYl0031GymzIcEEPjYxdcexi++ivhWVlCnI0x3tLDctmm6ooyG5q40wbYeNHeEy23PUqt1HI2Pi5cikvj2s9q6Zr6qkKLyuE1fuxCWn8QUCfW2NiaMGLpk6thWOqH85cF8oAABUpUZl3tqraDucrGkm61g6A/vPBGzYf3K4U68FXu7VNbWH/K8PnLw0LOCojka9EgsSTODLK6uGTl+hQKdtWDBVXVkxIyf/wNkAl0mLY0Iu8vn8prqocvXWqbbCmgeLxSSkZExY5jN9zIj5k9zeR8Ue8r9eXll99+QuAMDO4xe3HvYf6Nj9+LZVRALu1uPQ9b4nk9Kz/bZ4S/tb2Mn523Wn5POjjJu76vKSCUo6epN2yDqczkBFZfWOo+ddetleP7IVaenZrcuAyUsDHzxfOWuC6EgJJvCfvsYXlpTtXDl3wqiByODedl1PXL2TV1iSkZPfVJeY7rTGmgeFehsZ8/LK4R7duiAlhj9Gf3/1/jOXx6usqtlz4nJPqy63ju1EAh7h3Lu6ts7/xoMVs8braapJ4Xv31/C36w5JzVDJ4R8cjanYfSSGIG6LB2kFbyK/1tSxRjr3FrZYmxsXRzxoOFKCCbyGqhIKhTp66ZaxnpathQkKhTIz0Dm4YTEAgMfnN9UlRuuseYz1tBDRQTDS1XobGVNZVRP2KZrF5vwzuL/oU9UoF8e7T8Nef/wCdadF/PW6o2qgMWyhrKPoVGTlFgAA1JR/vU9Nggm8qb62n4/32n0n+o5boMig9+thNdyp1z9D+uNxWAldUolfvX7kWCwGAMDn8xEbVsSDVYiGqhIAICe/SCqn/nv423UH0k7UsliSB/zSBH6qxzDPES7PwyOevvn0JOzjzUevDp4LfH75PzkSUUJX2yNHSXwjyWJzRA8RL3rJH4E0BOoORMpoqSkDALJyCyUPa44JPIlIGO7Ua7hTLwDA0Us3V+z0u3Dz4byJbpK7hLTR8r3R6xIrpJORkw8A0FRVatFUkEZ0R3T7NQTSUnrZdiUTCQHBz5ZMHYNUkkrNyrUdNX3OeNedK+cKh0k2gb9wK+T2k9fXDm0RPj0N7e+wYqdfQXGphC6xSKRYShQA0MeuG5lIuP7w+dJpP1+c33z0CoNB97cXr7cDkUw93aHT6UYmZoK4RlKAkHbFyMSMTqfLOgrpQKOQ182fsmH/yVGzV48d7sxisY9cvIFBo4WvnxAkm8CrKDKehn0cOm35VI9hKoqMwpKyk9fu4rDY0QP7VtXUNtUlFom0Son+uC6qHHJdHgs3THYbDAAIDH7x+PUH7xmeGirwfqdl1NOdwYMHJ8TFyi4YSCfBe4YnU4F+9NKtpVsPUeTI3buand+7wdLEQHTML03g75zcdeBs4Abfk+WVVUwFeTtL071r5nczMwQASOhq7+tSYTKOXr41Y80ugUBgaqBzxGfZ9DEj2vu8nQ+UQGQHOaRD8+3bNwsLi4g7Z1paFxjS0bEZNcNz0hQfH59mjP0jgIWcIRDI7wbqDgQC+d1A3YFAIL8bqDsQCOR3A3UHAoH8bqDuQCCQ3w3UHQgE8ruB+7M6G7auM2QdAgTyC6DudB60tLQCAtq9Eqa0OHToUGlp6R+71O3Ro0cBAQF+fn4kEknWsTQLc/PGrXj/TOB6ZYgMSE1NNTY2vnDhwvjx42UdS+OUl5fr6Ohs2LBhxYoVso6lEwJ1ByID5s+fHxISkpCQgMX+uXfcy5cvDwgISElJwePxso6lswHzypDfTUFBgb+///Lly/9k0QEAeHt7FxYWXrp0SdaBdEKg7kB+N4cPHyaTyVOnTpV1IL9AQ0NjwoQJe/bs4fP5zRgOaQFQdyC/lerq6mPHji1evFhOrgO46K9evToxMfHevXuyDqSzAfM7kN/KgQMHNmzYkJ6ezmT+2vj9T2DUqFH5+fnv37+XdSCdCqg7kN8Hh8MxNDR0c3M7ePCgrGNpLu/fv7e3tw8NDe3Tp4+sY+k8QN2B/D7Onz8/a9asxMREHZ2OVNzZ0dGRwWDApy0pAnUH8psQCARdu3a1tra+cOGCrGNpGXfv3h09enR0dLSFhYWsY+kkQN2B/Cbu378/cuTIz58/W1lZyTqWliEQCCwtLW1tbc+fPy/rWDoJUHcgv4k+ffrQaLTg4GBZB9Ia/P39Z8+enZSUpK2tLetYOgPwPTrkd/Dhw4ewsLDVq1fLOpBWMnHiRDU1tQ6UDv/Dgfc7kN/B6NGjc3JyPnz4IOtAWo+vr+/mzZvT09MVFRVlHUuHB97vQNqd+Pj4e/furV27VtaBtIm5c+cSicRjx47JOpDOALzfgbQ706dPf/v2bWxsLBrdsf/OrV+//vTp02lpaR3FHOOPpWP/HED+fLKzsy9fvrxixYqOLjoAgCVLllRWVvr7+8s6kA5Ph/9RgPzhHDx4kMFgTJo0SdaBSAFlZeXJkyfv3buXy+XKOpaODdQdSDtSUVFx6tQpb29vIpEo61ikw6pVqzIyMm7cuCHrQDo2UHcg7Yifn59AIJg9e7asA5Ea+vr67u7uO3fuhInRtgB1B9JesFisw4cPz5s3T15eXtaxSJNVq1Z9+fLl2bNnsg6kAwPfZ0Hai5MnTy5evDglJUVdXV3WsUgZFxcXNBr95MkTWQfSUYG6A2kX+Hy+qalpv379Tp06JetYpM/jx48HDx786dMnW1tbWcfSIYG6A2kXgoKCPD09Y2JizMzMZB1Lu2Bra2tkZHTt2jVZB9IhgboDaRccHBzU1dU78Xufq1evenl5xcXFGRoayjqWjgfUHYj0efHihbOz89u3bx0cHGQdS3vB4/FMTEwGDRp09OhRWcfS8YC6A5E+Q4YMqaure/nypawDaV/8/PxWrFiRmpqqqqoq61g6GPA9OkTKREdHP378uONaXjSfadOmUalUPz8/WQfS8YD3OxApM3HixK9fv3758gWFQsk6lnbn33//PXjwYHp6OpVKlXUsHQl4vwORJmlpaYGBgatWrfobRAcAsHDhQg6Hc/r0aVkH0sGAugNpPRwO59GjR6Itvr6+ampqnp6esgvqt6KgoDBjxoz9+/ez2WxZx9KRgLoDaT35+flDhgyxsLC4cuUKl8stKSk5d+7c8uXLcTicrEP7fSxfvjw/Px8u5GkRML8DaT0fP37s0aMHGo0WCATq6updu3Z99+5dRkYGhUKRdWi/FS8vr4iIiJiYmE7gMfR7gN8mSOvJyclBtkQIBILs7OyQkJDa2tpt27bl5eXJOrTfyqpVq+Li4h48eCDrQDoMUHcgrScvLw+LxQoPBQJBXV2dr6+vrq7uokWL0tLSZBrd78PS0nLo0KF79uyRdSAdBqg7kNaTm5uLwWDEGrlcLovFOnLkiKenJ4fDkVFov5tVq1a9fv367du3sg6kYwB1B9J6cnJyeDxew3YcDmdqahocHPz3JJj79evn4OAAb3maCdQdSOvJzs5u6DSMw+E0NTWfP3/OZDJlFJdsWLly5d27d2NjY2UdSAcA6g6k9WRmZoq14HA4dXX1sLAwNTU1GQUlM0aPHm1qaurr6yvrQDoAUHcgrSc3N1f0EIvFMpnMly9fdj6DweaAQqG8vb0vXrzYUI4hYkDdgbQSPp9fWloqPMRisYqKimFhYbq6ujKNS5Z4eXkpKSn9999/sg7kTwfqDqSVFBYWCpPKWCyWRqO9fPlSX19f1nHJEgKBsHjx4hMnTpSVlSEtOTk5q1evhibwYkDdgbQS4UMWFoulUqmvX782NTWVdVCyZ968eRgM5vjx43FxcTNmzNDV1d2zZ09iYqKs4/qzwDZjDATSCMiiZDQaTSaTX7161aVLF1lH9EdAo9FGjBjh4+Ozbt06HA7H4XDwePzftoD7l8D7HUgrQTZJkEikZ8+eWVpayjqcP4KwsLChQ4deunSJy+UKBAJkk7pAIBBLwEOg7kBaSV5eHoVCef78uZ2dnaxjkT2BgYFmZmZ9+vR5+vQp4r4s7OJwONnZ2TKN7o8D6g6klZSVlQUHB/fo0UPWgfwRyMvLJycno1CohgspAQAZGRmyCOoPRgBpNgEBAbL+7/p7CQgIkPX//y8ICQnB4XCNGi0qKSnJOro/C5hXbjFzdvvLOoS/jhOrp8o6hF8zePDgwMBADw8PxBhEtKukpITP50N3HiFQd1pM94Husg7hr6ND6A6yVeLatWuenp5iusPj8YqKipSVlWUX2p8FFGAIRJp4eHicO3eu4dMWfKUlCtQdCETKTJ48+cyZM2LSA3VHFKg7EIj0mTZt2smTJ4XSg8FgoO6IAnUHAmkXZs6ceeDAAeRrLBYLdUcUqDsQSHuxZMmSHTt2AADYbDbUHVGg7kAg7cjatWs3b94sEAiQbSUQBPgeHQJpX3x8fOrq6l6/fi3rQP4goO78boqy0ytKCggkOQU1LZIcVbqTrxxiylBWX3fheWJU+O7pgz1X7Bo4Yb50TyEkM+FrXXWlkXUvCWOSot7xuOIlJRTVtJkaOu0UlWR8fHxkcl4ikUin02V19j8Bc3PzMWPGCA+h7vwmuGxWyIVDLwJPlxf9sERAoVBd7J1GzV5r0K2n1E+npms8e+dZHVMr5LAwO43HYavqGktlcj6fd8tva4j/ATyR5PdGksPDvrkjuWyWWOPwGSvdFmyUSiQtZcuWLWryZApRNj/2SZ/fyOS8Mie3rHbICFeoO78bVm3N/nmjkqM/GFk5uC/cpKxtUFdVmRD55uX103tnD5+144yti6t0z0iRV+wx2EN4GLh/HYlCm77lePNn4HE57LpaEoUm1l5VVnxy7fSclDhlLf2yQkm5Ui6bxWWz7IeNHTrVW7SdpqDU/DCkzuaBmiMtFGUYwF/I7IAEsRaoO7+DAN81ydEfBk6Y77lil7DR0nGQ/TDPPbOGXti22NSuLxqLzfgepW5gJkdnZCbEyDNV6ExVZGRFcUFRTjoOT1DTM8HiCaIzczns7KRYgEKp65vg8ERhe21VRUbcF2UtfSKFlvE9KvFzuI6ZVfyn10qaegqqmpKjzU2ND7tz8e39q5PW+NoOGC3We2X3SlZt9cYroWc3zZWsO7VVFQAARTUdDUNoCQapB9Sddqe8KC/sziU1PZMx3tvFujQMu4xfuac0P1sABLkpcXtnD5/mc/TVjXMpXz8iDyOlBTn+W+Z/C3+OjCeQyMOmLx8+YyVy+CX04bnN86rKSwAAJArNa/1BFOrHC8qspG97Zw/3XLHLsGvPAwvduWxW7PsX8RFhbvM3Dp68uNE466qrPj6+EXbnYnL0BwVVzX7/TDe2dWw4zG7g6K59hmBx+F9eeE1lOQCARJFyDgvSCYC60+7EfXzN53Hth41Fo8VL+gIA7Id5Il8UYzMAAGF3LsnR5OfuPq+qa8TlsA8scKsoyl+4/2oXe+faqvL7p/fd8ttKlKO5jJtTXpx/cu00irzi4sNBWsYWmQkxF7ctqa4slVdSFZ1fz8L20PO0BY5qDsPHNfWclRgVHnb7wqcnt3g8nlW/Ycv8bnXp6YRqYvO0jfOoZl44cr9DotA47LqCjBRWXY2arnHDBzfIXwjUnXanKCcNAKCubyZ5GGKSUJSTvvv+VzQGCwD4EBKUk/x9ysbDVv2HAwDwRNKE1XsTI988On/IZdycT49vsWprpmw6om9hBwDQt7CbtO7AzqkDWhrezqkDkqM/aBpZuC3YbD/ck0JXaMO11qOmqhwAEPH0TtChTYgGoTHY3qMmjl+5B08kSesskI4I1J12h8flAgDE8jJNYdl7ECI6AICEyDcAAByBGP/p59IPpqZu1Mvg0vzsjPhoAIC+5U+7P30LO9EUTzMpyctS0TF0nbuuW98hwlNLhdrKcgBASX6217qDWiaWVeUlTy8ffX3rPKu2evaOs1I8EaTDAXWn3aEzVQAApflZzRks+pRUWVYMADi9YVbDYRWlRdUVpQAAOTpD2IhCo8lUekvDG79qz8ugM0dXTqIymL1GTHB09VLVNWrpJI1i7TTCLywXRyQKHzANu9nvmjbwQ0jQmKXbGMp/Y01RCALUnXZH19wWAPD1zZO+7tMa9gr4/OrKMuHTDRrzMweEwxMAANtvf1ZQ1RD7FBZHwGBxyNtu0XZ2XU1Lw7NxHmXjPKokLyvszsU3dy+FnD9oZOXgOHqy3UA3Aonc0tlEQWOwBHK9HzAUCmXavV9y9Iei7DSoO38zcH9Wu6Nj2k3dwCzq1YPEqPCGvQ/O7V89rEtS1LuGXWp6xgCAwqxUHJ4o/FddXorB4lAolIKyOgCgKCtNOL40P7u2urJ1QSqoao6as3bXva/eR+/IK6tf3LF0+SDDxM9vWzcbQuy7F3eO72DV1pPC0oJsZHlRW2buKAR9KfQ49y2tpE6KIzsHUHd+B1M3+6FQ6MNLxkY8vS10wGTV1tw5vuP20a3aplYGXRupymDrMhqFRj88t5/D/vHjWFVWvHPqgP8WjwEAmNj1AQCE3jqPdAkEguCzvo2eHY3FIKf7ZZwoNLqLvdOcXed8HyW4zd/UinRPRtyX+E+v+XweAKAgM/neyV33Tu4U9qZ8/fjh0Q01PRM1PZOWztwRqWXzC6o4XL5AiiObybOE0qW3kiZc+L7oRuL9b8VSHCwV4HPW70Dfwm6Z381T62ceWzWZrqiibmDGZtXmJMXWVlfaurhO33K80ZfWqrpG/yzyCTq0acs4R3MHZz6PF/nsLpfLdlu4GQDQre9QfcvuoTfP5abGq+ubpsdF4XAEZS19ARD/2cXhiUx17S+hD8/5zNPtYu00drZob+CB9aya6kbDNrbtLdbCYdedXv8j35SZ8JXDYh1b6YUcTlizj66ocmXPyqSod35huQSynOPoyV9CH4acPxQd9ljbxLKsMD8hIoxMpc/cdqoN38uOhFd3Fa/uKtId2Rx8QtJOheeaKpPN1eSSCmvnBCaMs1H2dTVo+2BpAXXnN2HWo/+ue18jnt1JiHxTVphLotCMrOy7D/bQMe2GDCCQKSa2jopq2qKfGjJlqZGVQ/iDgLy0RDyR1M9jeh+3KUhmBIVGLz929+nVo0lf3pcWZFv1GzZw4sIA37UCPg9ZNWNi66jw/xzK7F3+If4HaysrCGTxVXwFGcnIS+6G1NVUibUIBIKqsh9/D9V0jYEuEB7yeTwAgLZJVwwGi8KgAQBYHH7xoeuRL+59DXtcWpBDolDdFmx0dPWiynSfRKfnY0blqfDccTbK+0YZIH6HWx+nH3+TM8Jc0clQvi2DpQhKzPgeIoHAwEBPT8/TkY3/lkLaj5k2tICAgLFjx7ZxHhQKdXyMsXT3Z+VXsk+F58bl11CJGLeuSv0M6BMvfh/eRXFaT9WgL4XXIgv2uRroKhDvfC26+Cn/lKfJ19zqoC+FpTUcLQZxRk9VAyYJye8IR7YxnlV3U65E5keusFOm4JCWShav655Pg0wYJ8aKbwxu0eBWMzsggdTF6fr168IWeL8DgbSegirOkBNfi6s5I8wVVai4jQ9Sh5ophKdVWGtSAADZZazwtIpqNg8ZGZ5WceZ9bsDngn4G8opyuKCowsDPBS8WWmnJE0RHirHsdlJmqfiefoTZvdQHmTDEGiOyKvUUiEIdAQBQCZguKuSIzEbeObRosBSBugOBtJ5T4TkFlexD7oYe3ZQAAEv7ag47+RUAgAKNVA0FADyILXk+34pKxAAA+hoULbqRGPyteG5vSUsKVKn4pp5JKPhG0oLZZaxuGhSxRnUaPiq7issXYNGoVg+WIlB3IJDWE5ZSTiVg3CyZyCGdhJ3TS33t/ZSmxk/vqYqIDgDATosKAMitYEs+xWoXbckDxKjh8Ek4cT0i4TEAgKxPG/sAACAASURBVBo2j1bfe6hFg6UIfI8OgbSe7HK2FoOIEbkvsNUSv30QRV/xZ/qGiEMDAKT47hwBg0bxGsyJnAWHEf99b9FgKQJ1BwJpPWwuH4+p9zBCwjXiOiAE256/zAhMOWxJDVessbiaQ8ajG97atGiwFIHPWRBI66EQMBV19X5vcysazwG3mpbmlU2VyR8yKnl8gehdWHxBjamyXMMZWjRYisD7HRnjO3fUor6/MABs6chmIuDzc5K/p3z9WF6c3/xP5aTExX963dTq57b0dkSMlcjppayy2p/Sc0/a631VqXhNeUKj/xrNKw80Uahi8Z4mlApbXiSVFVZxhpiJK1RLB0sReL8jY0bMXInsLJfiyObw+cX9y7uWI0alKBTK0nHQ9C3Hf7ltqignY/tkJ1ZN9ZbAdw3dS9vS20EZaaH4Krls2a2kbcP1FMm4gM8F79KkvLyrpXnlsVZKx9/mrLqbwuULLNTkYvNq1gWnqtHwk7urAgB4fIHn+VgDJmn3SP1fDm4/oO7IGGSblXRH/pKUmE/HVk3W7WI9e+dZeSW12PcvAvatPbZq8sqTwRI+JRAI/Lcs4HMbWWPSxt6Oy1grpc9ZVVci8x/HlwIAumtT97kauJ6OkWFIRBz6qpfZoptJQjd1Kw3KIXdDKgEDABAAILpQSPLg9gPqzm+iND+7JD9bQVWToaxeU1GWmfBV3cCMymBmJnytq6kysnIAAGQlxnDZbF1zGz6fl5P8nc/jKWsZEOV+vB8RHdlGHpzZh8XhFh0MoDKYAABlLf3q8tJbfv/GR4SZNOapjPAq6Ezi57fOnrOfXPaTbm/HBYNG7Rmlv8JZK6O0TkkOp6NA/JZXLXxX9U83pR46NGQJ8ghzRQs1OTPln9YiDBI2aJq5KhUvNrLt6CgQ7860yCxj5VeylSg4HcbPaTEoVNA0czk8pjmD2w+oO+0Oq7bm1PoZUS+DkScau4Hu3foOOb1h1uJDgV37DAncvz4tNvJwaBYA4OaRf3NSvs/eee74yskl+VkAADyBNNZ7e/8xMwEAoiNF4XE5jdpoIOhZ2ImZivL5vNh3L8x69kdEB6HH4H9u+f37JfRhU7pTlJNx/dDGETNXNrq7qi29HZqMUta7tIo+BnRkMQ4AICq7Svi+HMnCIO1qNLwarZ4ZPg6DctD94TYtOlJaaMkTtBrMiUIB4Ul/Obj9gLrT7tw84hP1MnjAhHlDpy4DAAQd2nTL71/EFktsJBqDqS4vvbh96bhVu42sHMoKco6vnnJlzypbF1cJv7G1VRV7Zw9vqnfbzU9i5foKs9LYrFp1fVPRRqaGLhZPyEn+3ugkAoHg/L8LlTX1h01f/vr2BSn2dnRKajjed5J66dJ3jNBToeIjMiv3Pc9UouAGNnjNBBEF6k77IhAIwoOvqegYei7fhUKhAADTthzb6G7X1PjaqooRM1bYOI0EAFAZzH4eMwL3r8uI/2ru4NzUR+RojF33m0woMJTVxFqqy0sAAHL1/dtRKJQcVV64uVyMV0Fn4iPCNlx8gZgcSrG3o2OlQdnvarj9SXq/w1FIi6ky+aC7oeiDDKQhUHfal5K8rJqKMuv+IxDRAQCg0RjbAaMfNOHRBQDoYv9TYuiKKgCAuhpJm/RQaDRTvQWvPHg8rpih6o/AsFger5G8b3Fu5vVDG4dOXab9f8sOafV2DsZaK7l1ZaaV1JXVcpWpvyk/0tGButO+1FSUAgCojHrvpyXIBBqNEa0whUJWc0nVq4RIkmvUiZlVW81U1xFrRN5DKapqjZy1quFUbentTOAwKCMlWJmnBUDdaV9QGIywlI0Qdp00bXRbmldmaugidyKijbVVFTUVZUqaumIff3P30vcPLz2X70yO/oC05KcnAQDSYiOryooLslJb3Wts6yi8B4T8bUDdaV8YSuoAgOKcDNHGtNgIKZ6ipXllEoWmbmCGFOcSEvcxFABgZN1L7ONZiTEAgADftWLt53zmAwAQy9TW9Z78WIKSarmuzsr4C7Fd1SlrB7Rs9eAfDvyPb1/k6Aw1PZPvH16WF+XRmapI5fLIZ/ekeYoW5pUBAH3cpgTsWxN256KjqxcAgFVTfe/Ubjk6w27AaAAAsrxIQVVTSVPPfZHPqDnrRD/75u6lAN+1a/2fqumZYPF4twUbW9cr3RqBnZh36ZXtujW8mZTUcC98zIvNq+HyBToKhIm2KobM1j9awv/7dmfUnDUn1kzb5uVk4zySz+NHvbzfx33Ks6uNlypvBS3NKwMAnMfOig4NOf/vwncPAuWVVOI/hVWUFM7Z7Y+kltK+f94/z3WQ16Kxy7bjCSQ8od6PF45ABAAQyRSkRmBbeiEdhZjcag//byyuwFGPjkWDqxEFZ97l7RtlMNa6lQuyoO60O90H/UOmyr+9fyUvLVFF22D58XtIXSqkiqaWsQWO8GO9loZBl7rqelbqNAUlE1tHCoMpNrKNYLC4ZX4339y9HPP2aWVpsbXTiL7/TNM0NEd65WgME1tHZU29Rj8rr6RmYutIIDW+X7ktvZA/lgVBiWgU6uk8S8QNOq+CPfh49JZHae7dmK3zJIS68zswd3Axd3ARHn54FAQAoMgrAADGeu8Qtos9lQAATLv3M+3eD/ladGTbQWOwfdym9HGb0rBLx8xq5akHTX3Qqt8wq37D2qP3T6OGzb8eVfAps7K4mssgY+11aGOslIj/d6VJKKy9FlmAVNrTVyRO7q6qzfjxV2Hixe99DeijLZnH3uQkFtYyKbjpPVW7qVOic6rPf8wrqGTrK5IW9NFAXI0FAjDG/1t/Q/mxVkonw3PjC2qIWLSzMcPTWrnR3+isMtalT/mx+TUCgcCASRpvo2zy/70XkgNuNSU1XBUq3r0r0+D/D1aqNLyzsXzg58LcCnbrVjlD3Wl37p7Y+erGuVWnH6poGyDJlPDgaxR5xU6zJ7tTwuEJxvh/SyisGWqmaK5GzipjbQpJC/pSeHO6OQaNep5YNu1KnIY8YYAxg8sXBH0pPPs+7/4siy6qcgCAiMxKIhZ9JaLATJWsQsXf+1YU/K34kLvhxgdp/QzpJBzmzPvcJ/GlrxdbYdAoFAp8yqzEoFGXI/JNlMka8oT3aRUPvpfE5FZvHy5+y/kuvWLypTgqETPMTAGDRj2JLz33Ie/kWOPBpgqSAxadJDytwvdFJmgMeRL29DjxkooKZGzgVPGf1co6HhaNkie1UkCg7rQ7Ns4jn1z22znFxcbFFYPFfX3zqDg3c8a/Jzrl+t1OQ1R2VVR21e6R+pPsfpTTexRXsutpRnxBTRdVuV1PM0h4dMgcS8SBeE4vNcdDn/3Ccvw8jAAAAAUexZecGWcy2FQBAGCvQ1t2O2nJzaSn87shOz/XB6f6f8iLzqlGyk6gUKiwlPIDow2RdAmby/fwjz3/MW9eb3XRTVtcvmDJzSQGGftkXlfkvGsHaA878XXl3RQnQ/kvOdUSAha9NDIe3dResGYaKkdlVz1NKB1hrtjqbetQd9odTSMLn4Dw0JvnspO/c1i1lr0H9R45UdfcRtZxQX7Nu/QKT2tlHAYFABhsqoDoCADgzHgTUdtzHQZRmYpPKqoVflCDThAO7qohBwBwNmIIt5t3U6cAAPKrfjq6K8rhxlj9yNHiseixVkoRmZXv0io8rH4mbj9lVmaVsdYM0Bael4BFT+6usi449V16JWJL2lTAonRTpxx0M2z19yShsHb61Xh1OmHbsMYzgM0B6s7vQFFNy23BJllHAWkBdlpUj25KQV8KnyWUOerRHPXpA0wYGvT/vwGgE0LiSi5+ys8pZ9dx+Fy+oKyWSxe5WRDNeiB7tURvMeQIaMSCS9hixCSJLqLUUSACAHLql5pILqoFANz4UvgqqUzYiFgdphTXTumuKiFgafEiqWze9QQNOuHyJDMGufXqAXUHAmkEFAoccjec3F3l3rfi0OTyB99LNjxInWinsnO4Pl8gmHjx++uU8j76dBstKp2IwaBR3/Pr1ZjHNMgJS37vQ8DWy/4ig8VKTXB5AgCAviJJbOGMsxHDVIUsIWBpLQs/FZ679XH6AGPGf+6GlLYZg0Hd6eTUVldmfI9S0tJTUJGmN/Nfgq0W1VaLCgDILmftfJpx8WO+gw5NjoB5nVI+r7f6hkE/t7MdDs1uy4mKqjmih8hdjFjWlknBAQAc9enTezZpQtpowK6WTNExLc0rIxx5nb3zacaiPhqrXbTbLmSyXwcJaVdyU+L2zh7+8dFNWQcCAABVZcVp3yLzM5J5XE4zhsuSd+kVx9/kCA816IR1A3QAAN/za/Iq2MhvuLD3eWKZmHC0lPjCmsKqnzN8zqoCAJirkkXH2GlRMWjUk/gS0cbg2OI9zzNrOXwJAYudC8krN/pPvYnnsuDY4p1PM1Y6a60ZIAXRgfc7kN9EYVbq5V3LY94+RQ7JVPqImasGeS2SdVxNklXK2vo4vaiaM6WHqpIcrriG4xeWAwCw0aIqkLEAgIDPBT11aDg06lFcyal3ueaqclnlLBaXL/bE1EwoeMzim4nbh+ur0/ChKeXnP+bpKxLtRKQNAKBCxY+xUroWWbD9Sfq0Hmp0EuZlUtnyO8mmyuRVzloSAhY7V0vzypUs3sYHaaYq5CFmCnEF9VRMg0YQlj9tEVB3IO1OXXXVgQVuVeUlUzYeNujWs6K44M7xHYEH1uMIBGTv6B+Ih5VSZhnrRHjOsf/fRDDlcJsG6yD1qmY5qJ1+l2u5+yNi9HVsrHFoctnmh2lWeyN+vEpvId21qWYqZCe/KCSJo6NAPOlp0jBJtHO4HgGLPhWeezQsBwCARoGBJgq+rga/DLgtfEivyK9k51eyXfy+iHX95274T7fWbJWAutO+sGprinMz6mqq5JmqCqriGZbyorySvGwShcpU18Hif9ziIhkZxPW9KCejojhfSVMP8UIWCAS5KXFcDltV11jobvHDJV7flKqghLjH0xSVlTTEHS1EqSguKMpJx+EJanomwvM2J+DW8SX0YUFmyvQtx3uNnAAAUNc31TS2WD7QKDw44I/VHQDAsv6aCxzV00tZFXVcRTmcJp2A/X9pUJ8hugv7aGSWsugkLGKlbKxE6m8oX8fhGzJJFyaaiVa2UqbggqaZq9N/mivb69CCppkbi1j2CARgtYv23F7qKcV1RBzaRJks1Jyrk83k//+mDI9F7xiut2GgTmJRjUAAtBlEBZGXShICbgs2mtSgaeaNdrV6ayjUnXYk6NCm5wEn2HU/lnVom3abtf20mp4J4kRzdvNcoTENmUp3W7DJaewsAEBBRvLe2cOnbDz89c2TyOd3kT0NY5Zts+43/PAyz+ykWAAAmSY/Z6c/Yn6anRy7d/bw8av2xn96jYwHABjb9J7ve5lCF1++UVqQ479l/rfw58ghgUQeNn358BkrfxmwKPkZyWUFOaAxqApKYs7NAADTHn1Xn32kbfLTcpBCV6ApKNXVVDWY4M8Cj0U3ZejFlMMx5eqt/BT+EvbQrvdoQ8CixazUFeVwDvU/i7y4opOwyEpCUex1xG3YyXg0sgKoRQG3GgYZ26gVfFuAutNefAgJCjl/cNSctU5jZuJJchnxX85tnue3fMK2mxECgeC/JWMqS4u8j93Rt+heWVp4aaf3ld0rtE27GXTtgUajAQAP/Q/YDhi950FsdXnJ0ZVeN//z+RgSNGD8vK59h2QlfPNbPv7q3lXbbn5CNnkCAILP7LVxGrnzXjQGg30ZdObBWd8ru1fM3nFWNCQuh31ggVtFUf7C/Ve72DvXVpXfP73vlt9WohzNZdwcCQGLXdrTK8deBJ5s9Kq7D/pnzq5zYo10RRXEsFVIbmp8WWGuqKMr5K8C6k57kREfDQBwGDEeKQVhZOWwwPdKUU46j8upLi/VMbPWt+zepacTAIAoRxk9b8O38Gff378w6NoD+bgcnfHPIh8AgIKqpqPrpFt+W3W62CDbOOkOKuYOLp9f3Oew63D4H0tgKXSFiWv3Iw5+7gs3x75/EfnsrvDOBSHy2d2c5O9TNh626j8cAIAnkias3psY+ebR+UMu4+ZICFhsS8foeesHT17c6FUTSORG2xFyU+OLczOzk2IfXzqibmDWcB8s5C8B6k57YWLrGHL+4JFl4wZNWtSlZ3+GioaGYRdkLyhNUXn2zrMAgJL8rIriQh6HjdQLrigpFH5ctD4fTVEFAGBkZS9sQW4fWLU1Qt3pYu8kahtq2K1n2rfI/PRE0ZAQj0EcgRj/6bWwkampG/UyuDQ/W0LAYsjRGXL01mQrg8/sffcgEDE29Fy+U16pEU+yvxDRDM5fwt91tb8TS8dBc3efv3967zmfeQAAFR3DHoM9Bk1aiHhrPblyNMT/YHlRHhqNwZNIiBePqH07mSYv/BrpFW1BoTGg/gdoCsqiZydT5QEANZXliNUWQmVZMQDg9IZZDaOtKC2SHLBUGD1vo9OYWSUF2e+CA7Z79XdfuHnoNG9pTd5xaZjB6fRA3WlH7Aa62Q10K8rJiH33POpV8L2Tu6JDH6678Dzi6Z2AfWusnUZ4LP5XRccQKXezalibbDHEHqmQhXli76pweAIAYPvtzwqqGmIfx+IIEgIWe85qaV5ZCFNDh6mhYwBA94HuBxa43fT713H0ZNGypZC/BKg77Qifx0VjsEx17b7uU/u6T713cted4ztSYyK+vH4IAJi0dj/iuAwAyEr81sZzFWSliB4WZqch+1FL8n7WNVbTM0aW8CFOQAhlhbk0RWXkGa2pgA1FHvFakVcO8F37PuS6z7W3NMWfN2Vqesbfwp+V5GV1Gt25FV10OSJ/90h9gzYYD7edZwmlwiU8C/poOBnK/+oTreHk29zH/1853dRbdglA3WkvDiwYXVNZvvp0iPCmA3nkQWMwRDIVAFBdUYboTmVp0f1TuwEAXA6r1aeLehlcnJupqKaFLM+JeftUXd9UXklNVHdsXUbfPrb94bn9JnaOSGKoqqx459QBanomS4/clBCw2LlamlfWNLJ4ctnv1tGtXusPIs+M5UV5kc/u4YkkVZ3WrLL7M8kuZ4WnVVSxG6l9+DvJr+SEp1VM76mqQSeo/78i+/PEskdxJTnlLEU5XHdtqqe1cvP9SZ8llN77VlxQyVGUww42VRhhrggAMFMl8wWC9+kVj+NLWxEk1J32wmXcXL/lEzePte9i70wgkQsyU7+EPuxi76Rnbsths17dOHt4yVjbAa7VFWXRoSGT1h24tNM7+vWjF4GndM1tW3E6sx79d0x2tuo/HE8gRjy7W1tVMXOr+C2Jqq7RP4t8gg5t2jLO0dzBmc/jRT67y+Wy3RZulhyw2DwtzSv3Gjkh5s2T17fOx314pdPFmlVbHf/pNZfNnrRuP4EMvZbbBbeuTBvNH8uIltxKCooqNGSSzFTJ3/NrrkcV+n/Ivz3DvDnFlH1C0k6F55oqk83V5JIKa+cEJoyzUfZ1NeijT++jT8egUVB3/iy69hmy8Urou+Br+RnJHFadvJLarO2nbZxHotBoE1vHFSfuvb13JTMhRlFNe9GhQN0u1jgC8XnAifiIMGPb3ia2jopqP0tE0JkqJraOcrSfv+oq2gYmto6iaRcTW8fhM1e+vumfnfLdxM6xj9sUY5veAACiHNXE1lGY0BkyZamRlUP4g4C8tEQ8kdTPY3oftykMZXXJAbfxW4FCoebs9u/tOinq1YPi3Aw8kewyfl5ftylKTVjHQ6TIna9FQVGFU3uobhumh7zw3P0s47/Q7MufCmb3+sX7xI8ZlafCc8fZKO8bZYB8duvj9ONvckaYK7bx8Q3qTjuiaWjusWRro12ihu0IFr0GWPQagHwtZqsu2oUwYMK8ARPmibYIBAJ9Czt9CzuxE6nrm4rNZtCtp0G3ni0NuO00vIo/kAsf8+/GFO0YoS+6iSG+oGZ9cKqrBdOruwqby7/1tehtakVRNUeJgnPUp7t3VWr4yHI1suDGl8JD7oZC562MUpb37aSxVsqImSlfAO5/K36aUFpYxZYnYfvoy4+xUsJJY1uDGAVVHGtNind/TeEqi4m2Kv+FZsfWNwxqlOtRhSgUEDW+WNpP8+z7vGuRBVB3IBCpYaZCXnu/4lZ04WqXn/ebN74UhadVrB+ow+UJJlz8/iGjcoipgokyOaGgZsnNpOeJZUcb7AXNKK0LT6uo5fCFLTUcXnhaBbLhgC8AM6/FP4orGWDM6KZOSS2pW30v+XpUQeBU84bSs+x2UmZp44m/2b3Uf7ntc5aD2iyHevc1lSweAECJ8mt774isSj0ForLISCoB00WFHJFZ+cvPSgbqDgTyk+7aVB0F4r1vxULdEQjAnZgiQybJWpPyKK4kPK3Cu7/mcictpHfpraTrUYUrnLSQ3aHN5Gpk/qO4Ep8hukJFuBldtOhGov+HPDGNAACoUvECQWOzACC6+7SZCATA90UmFo0aY6X8y8HZZaxuGuIbwdRp+Kjsqv+1d94BTV1vHz/ZO4GEsPdGQJaiFlFcde9ZV6e+ta0d+uuwtXV0D2erXXa4q+LCvQAVHAxF2XuFTQZkz/v+cTXGAJERSJDz+Suec3LuEyRfzn3uOd9Ho0O6VzkLBepOv8cogwPpIXMH221N5uXUSUOcaACA9GoxT6T8dII7ACDGi3XtrTAn5pOT5dHuzGNZTSXN8i7pzqlsPoWANbQNnDPYbuPFirO5/La6Y7jy6iEIAjZdqriQL9g4ydO/E8dHZWodpU35LQoRBwAwtLXvBlB3+j1tMziQnjAvjLs1mZeQw0d151R2Mw6LmRfGBQDQSTgaCbc/o6GgUSaSaTQ6pF6sAgCotbpOTPyE0mY5AsDCvXmGjSqNrowv7/hNPUWm0r13ovji0+ss0+CwGK3OeK2Fuj73sGQ71B0I5Ck82OQhbowzuc2fTnDX6JCzufxR3iwHBhEAcL1U9MqhQhYZNzmIHWBPJeOxOXXS4qYui4VGh1AIWP1zbpRIV0Zv5JVR6lpVyw8WVAsV/ywOHO/f2T0QdjS8QKYxauRL1VQitu06qEtA3YFAjJkfzv34TFlWjUQo1/Cl6gURj1Ih312tIuIwV1aF6ZOy+9Ib4h80tZ0B3f9tmJcRGBgw29EIDWIVeu/2THqYV0bLmc/9JxdBkDMrQrvkzhNoT02rEmt1iKHzYWGjLNC+p7uuoK+7FbHt7dlvx3RYKqDP2LP+jTcimW/HOL4d42i43VkuaS3MuClo4Jl8dzvodNqmmoqK3Hut/EZ945eLY9+OcVw5xPb9MaasES3C9GAOEY+9VCA4m8tnkvETAx99t+tbVW42JL3o6BDQrugAAKgErFGViBulLfrX0R4MkVyTYfBUSKNDPkooSy1vaTMTcGQQO7Jh70xeWaNDlh8s0GiRE6+FdNUSbEIAW6LUXi16sjMwqUTUJFFPCuqpdypc70DaAU8k7UqtN2zhleTuXruksbps/vtfdXRIol3SLsYf2/G5sOFRmRfv0KFL1211Dwz7/NBNAMAva14quX/b3OH3FBYFP8Hf9nKhsFGsmhnK0Vu1BzpQb1W0JpeIXvBklgsUPyVWc2kEAEClwHg9Eu5CR2u/OLOIZDz2UoHQUHdWDHc6ltX07omSLTN9wpzpTRLVN1erzuby0SMIRvQwr7zndl1uvfS7ad4tCk2L4slNEwmH9eKQAQAL/s1zsSFum9WO0/uCcO5vt2o/SijT6JAQJ1pevezTc+VOTOLyoT396wh1B/Js7l44tvfLd7xChjRWl3Vi+BOyks/9+dnr3qFDX92428bOsej+rWPbPtv61qxvzzyk0IzrHFgVc8PsXjtcCABYaPC8+YuJnq8eKliyPx91FH3zBad3Yl1G/5z17dXK66WiWG+WfmSMF+uVaMe96fUvbL8PABjsTNs+23fsrgdoUtbHjnJgadAnZ8rm/fPoPLADg/jzXL9RPqz2YukRCTl8AMAnZ43/4zzY5FvvRaAVe/xk7a+DyATs4WVBq0+UrDxShLaEu9B3zPHtdll0PVB3zEzpwzQMBuMdOtSwsYXfUF9e5Ojlj/p1qVWK5ppKhVTCcXIzPKJtSFXBA7VSYbixWNhY21hV6hYwmMp49Nup02pqywuVMqmtg3PvleWrryj+Z+OqxR//5OoX/M3L47r03ov7dpCotPd/OYGa+Dj7BIkFTad/+yY/LTlyzPReCtgsjPOzjX81GIMBhobHQQ7UlHcjSvlyuVrnY0dBv37J74QXN8ntGQS0qJYPh4KWG/16qteaONdqkZJBwvnYUXQIiH81WH9Qc4Qn8/rq8EqBokmqtqHgPdnknmyHMcF3072l7R1VJT9exH3+osfFfEHbASgebHLCGyHVImWDWMWlEzxsu7BdwARQd8zMlYO7Mq+d/vFCvqGZ3qldX948te+rE5ksjsO5v368+O92ufTRvX3g0NGvb/7N1sF4982hHz5srC7beqVE33I/6eyh7//34R/nAobEAgCuH//75C+bJS2PfmO8Q4a8tvl3R0/jjbNajbok605H0XqFDNHXpegIIoXyv9/P+oYPL8tO7/SP4RGL/ve9RqU0dA6zd/NBK9t0dao+Bo/DtGtmjsdhAuyfOnNPJ+H02mRUj5xDI3Ae+7djMaDthB5sMloKvfcY7PyMHHClUDHhWclpNxuSYcX3ngN1x8yMmLoo48rJjCun9OenNGpVZmKCd+hQR0+/O+ePntz1ZcyMJbNWrSfTmbm3rv7x6ev/bn7ng10nu3SVO+eP7v/6/ehJ8+au3sTkcEuy7vy9YdXWt2Z+eTzDyIlCLmn9ceXUjub56kSGo6e/6WuxHVy7vZjyHBRh1JJ3NwmDwfh2cEAM0vdMD+Z0VJ2i94C6Y2ZCYyYwbO3SLx/X605O6hVZqyhmxhIAgFIuGRw7ccEH36A+EkMmzE5NOJCfdh013Or8Vc78+Z2di8frm39Hj6QHRcctWvvtrx8tT798fOTMZYYjaUzb787mdDSPwfy71gAAIABJREFUrX2fOhynXz6emnBgzIKV9m7efXndAcj8f/OwGPD9dJ85g59hqzasWy6rGy5UHLrXoNZ2cILjWUDdMTNYHD560rzE/34X1PPQund3L8YTiOShL84FAIye+9roua+pFPLa0ny5VKzTaQEGo1GrZJLWtrWuOkIsaGqoLAmKjjO8gUJlq/TBXSPdwWCxds5m22jfE26c+PfAt2vCRk1euPYbS8fyPLM4yn5x1LPPXvWQTZM9N03u/gYIqDvmZ8TUl64d/i3jyskXl61WyqQPbpyPGDMNTQY31VQc/HZN3p0knU5LJFFwBIJapQRGO8yehVjYDADIT0vOT0s26jKsSGE96HTao1s/vXro1zELVrz00Q+o5SBkIAN1x/x4Dopw8gpIu3z8xWWr7yefVSnk6E0WgiA7Vs8TNtas+GbP4NjJaCLmn41vpSYc6My0GrUKfYHaj74w7aVl63cYjWn7le55XrmHaNSqXz9clnPr6vL1O0fNeaVXrwXpL0Dd6RVGTF104pdN/LrqtEvHbe2d0fp8jdVl9RVFo+a8it5zodSU5rU7Aw6HVysVhi2NVaXoC46TG5FEqa8o1hfPQp+pi0V8o7KcZskr9wQEQX7/5JX8u8nv7YwfNHxM713ISrASa3frB+pOrzB86sKTu79Mu3gs707ihKXvoFahZBodACATi/TDko7+WVdeCAB4dLdlgI29U2FmSn1FEaoLTbzytEvxaBcWh48cN/3O+aPZqVdCYyagjVcO7o7f8fm6f68abR3q7byyXNJaVfDAxt7ZsEaFnpsn995POvvWTwcGguhYj7W79QN1p1dgO7gGRMWe/3uLRq2Kmb4EbWRxHAKHjsq8euqPda9xnNzKstM1GvXc1ZsOff+/079+HTtrueEMwycvvHvh2E//Nz189BSFTJyfdmPMghXn/voJQRAAwPz3vyp9mP7z+wsjx063c/bgFefk3Lr6wvTFRqJjlrzyrbOHH1w/DwCQtgoBALfPHkY38vhHxox76U1eSe6PK6eOWbByySc/Gb1Rq1Ef/3kDkUS5e+HY3QvHDLuChsXFzXu9J1FB+jVQd3qLcYv+7+qh3XYunoZ7+d7eevjKgV8q8u7XVxaHx02Nm/86okPqK4qaeOXNtVVu/iH6WsOhI1/83+9nbp/7r6mmguPk/sHukyq5rCTrDolCAwCw7Bw3HE69eXpf8b1b1UUPbbhO72w9HDZ6Sm98EJVcKhHx0dcBUSPR6jcAAIVMDACg0JlcVy88oR3TTK1W4+obrB9viPXvG4T0KlB3eouIMdMixkwzaqTQGDP+b51R4+KPH60Uhk2eb9je1vvd0N+LTKNPWPzWhMVvmTtwY+LmvxE3/42Oel19g4OiRzt5BbTtIpIoz6shmUaHxGc1JZeKJAqtO5u8ONIeNQkzwrQJ/MNaafyDpmqhQocATzZ5fjhXP4mJrp5wOrt5f0bDnwsDsuuk8Q+ahDK1my359WGO+myURouceNh8vVQkkKmZZPwwD+aiCHtq191UnwnUHUiPkLWKWpobhk1eYOlA+g6NDlm6Pz+lvGW0j40Li3SrvGVfev0vc/1mhT61Q8+0Cfz5fMHKI4UhjrThnkwEATdKRf+m1e9ZFDAhwNZEl1EkXbXmaZSob1e0/nW37sj9xtE+NhwaIT6r6ej9xqR3wt1sSGot8tK+vNsVrWP9bEKd6FUixcaLFQcyGk6/HsIgm3nrA9QdSDvotNpL+3YCAEbNfdX0wXEq02b19iPduERqwgGJSNDVA+7WwKHMxptlLT/M8F4S5YDqy5Q/stefL5866CkXi2vFQhMm8PvS6p2YxHMrQ1FLLY0WeflQQWKxcEKArYkuo0i6Z/l+Pk+Q+FY4KiWjfJpXHy8+l8t/M8b537T62xWt61/0WBXjjI5MyOGvOlb0S0rNuvFm3noKdQdijJNXgF/48Ic3L6IP5nrJsKIg/Yagnsew4dj3t+p9Z3L5NCJu4WMTQjwOs2dRgEylNTpO/kwT+GapJqdeip6NwuMwB5cF6Uea6DKke9Y8rw1z1K9fhrgxUBdUAMD5PD4Jj33dwG1+ejBn/XnC5QIB1B1IrzP19Q+nvv5hb1/l9TZllPsLpc1yNxuSoW2Fu207Z7VNm8B/PM592cH8Kb9nhzjRYrxYo31ZMV4sdE4TXWbBsPQFmYDVW7WXCxQetiQi/slCCYMBXmzyw7pnV/jrKlB3IJCu0cnqEaZN4CNc6bffizyd03y1SHgos+H3W7UuLNIfC/3DXegmuswSP76DUhBKDYLFGKsbAYfRdLFaRqdiMPuMEMjzDYdGaJSonjnsmSbwDDJu6RCHpUMcNDrkSqFw7enSd0+U3FgdbrrLkJ5bvhtiR8O3/Vx8qZpNfXZl0a4Cfd0tj5XYuUM6SbQ7UyDTZNU82YL0b1r9a4cLmyRqw2EmTOClKu1fd+ru8x7NgMdiJgexJwexS5vlQpmmoy6Vxnjd0UPLdyOGeTAFMs3D2id3VfWtqpJm+VB38yf44HoHAukarw93PJrV+P7Jkm+neftwyHcqxd9cqfLmkI0qjpswgacQcH/drf/rTv0PM7zRQsAPayWJRcIQJxqLgu+oyzDzgmLGUqJoJfX4B00fnCrZPts3gEsp5Ss+TCjFYDD6x1tmBOoOBNI1Auyp/y4O/NjAlT3Wm7VjjnE9BtMm8PuXBL53skRfMhSDAaO8bb6Z5oXFgI66+uBz7V0S+MmZskm/PURbnFnE3xf4R7nB9U4/R6NS1pQVAAAc3HzQY6LtYtr4XdDAEzXVk8hUrquXkYuFia7u0a5NvVjYXFua7+Dhi3pIm7aXN3tI1kCcr83dDyLbtr8T6/JO7COr7CAH6p02YzLWRulfn10R2u7kPnaUjrp6yIoRTkYViu3phJpNI/T/HO1jc/v9dj6X2YG603dc2rcz4Y9vlTIpAIBAJE9Y+vbst7/AtHmCYML4vargwT+b3q4ufPTniESlTVjyzqxVn5nuMqSrdjzXDv+Wfvn4d2dzOE5u+sbzf/105dDujUdv23CdTNjLdzIkyAAE6k4fcfPUvmPb18fMWDpx2WoyjZF45I/zf2+hMliTXn7fcJhp4/ff172K6HTrD1x38gqQS1qSjv559s/vnb0CoifNM9FlOH9X7XhGzXkl7VJ8asIB/bEyRKdLv3LSMzjS1TfYtL18J0OCDECg7vQRF/7Zau/m/cqGXegCZ957m0VNtahjqSEmjN81GnVDZcmIqYvQIg0kCnX221+4+oe4+YWolPKOuozm76odT+DQUQ4evqkJB6av/ASNvOheqqipbvrKj03by0dPmtfJkCADEKg7fYFY0NRYXfbC9MWGd1VvfLWn7UjTxu9eIVF3L8ZTmTZDxs/yChmCJxCHTpiDvtFElyHdsOMZNfuVY9vX56clo66Jdy/GE0mU6Inznmkv38mQIAMQqDt9AbquoTFsnjnStPH7uzuOHd+5IeXUvmuHfyOSKUHRceMXrwqKjjPd1UNiZiw5uWtzyun9g4aN0Wk1966djho/k0Jn1pbmm7aX772QIP0dqDt9AZ5IAgDIJC2mhz3T+J1ha/fKhl1L120tzrqdezvxzvkjW1fNfPOHfVHjZproMrxEN2ze6TacyLEz7ieelUtaS7LuSFoEI2ct74y9fCdDggxAoO70BWxHVzyRVFdeZNhYW1YAAHD2DtS3PNP4XafTYrE4PJEUFB0XFB035bW1n0wPvR7/d9S4mSa6DC/aPZt3NLt8P/lc3p1Eezdv/8iYztjLdzIkyAAE6k5fgCcQI0ZPTb9youheKvqlFQuavn99ooO776d7r+mHmTZ+L0i/vmP1/JXf/q23McQTiFgsDoPFmugyiqR7Nu/67HJF3r2pr/0PzVKZtpdXKWSdDKmP2XSFt+VmvWVjGGjUieSTBj3VAnWnj5i/5qvSh2nb3podGjOBwmBlp15WKxQL135rOMa08fsL0xd7Bkf+9vHLYbGT7N29lXJ53p1rCql40svv+UfGdNRlFEa3bd7R7DIWi3th+uInH6pje3mdVtPJkPqSDRs2WPDqA5ng4GDDf2KQrlSqHOAcPXp04cKFe+61du/t0hZhcvyesuwMBEGcvQPHLFiBbsaL3/E5rzj3/V9OAADkUjFq/I7D4/0jY1Dj9/gdnzfxyodPWRQ5bnraxfiC9ButgiYyjeHk6T9y1nJUR9QqRUddZkEsaPpgvM/g2Inv7niqMoRCKkHt5ZVyiQ3XKSJuWtjoKeiCyIwhvRHJPHLkyIIFA8hN9fkG6k4X6KHu9GvuJ53dtXbxez8f199S9SVQd54zoA8G5NnIxC3xOz53DwwLeWG8pWOBPA/A/A7EFGU5GbfPHn5w44JEyP/470ttT5NBIN0A6g7EFGqlorG6LCBq5IvLVrv598ohacgABOoOxBQBUSPRGqEQiBmB+R0IBNLXQN2BQCB9DbzP6jLpV05YOgQIpH8DdafL/P7xK5YOAQLp38B9g1bHoUOHli9fnpubGxAQYOlYnkFJSUlQUNC+ffteeuklS8cC6U9A3bEudDpdWFhYeHj4/v37LR1Lp1i6dOm9e/dycnKwlj7wCelHwN8V6+LIkSP5+fmffdZvzM83bNhQVFR09OhRSwcC6U/A9Y4VgS52Bg8efPDgQUvH0gUWL16clZUFlzyQzgN/UayIY8eO5eXlrVu3ztKBdI3PP/+8sLAwPj7e0oFA+g1wvWMtIAgSFhYWHBx8+PBhS8fSZRYtWpSdnZ2dnQ2XPJDOAH9LrIX4+Pjc3NxPP/3U0oF0hy+++KKgoODECbizCdIp4HrHKkAQJDw8PDAw8MiRI5aOpZssWLAgLy/v4cOHcMkDeSbwV8QqOHHiRHZ2dj96jNWWDRs25Ofnnzp1ytKBQPoBcL1jeRAEiYiI8PPzO3bsWCeGWy/z5s0rLCx88OABXPJATAN/PyzPqVOnHj58uH79eksH0lM2bdqUl5eXkJBg6UAg1g5c71gYBEGio6Pd3d2PHz9u6VjMwJw5c8rLy+/duwedCSEmgOsdC5OQkJCZmfnFF19YOhDzsHnz5ocPH545c8bSgUCsGrjesTDR0dGurq7P0xPo2bNnV1ZWZmZmwiUPpCPgeseSnDlzJiMjo5/u2emIDRs2ZGVlnTt3ztKBQKwXuN6xJNHR0c7Ozs/fs+eZM2fyeLyMjAy45IG0C1zvWIxz586lp6f36z07HbFx48b79+9fuHDB0oFArBS43rEYw4YNc3BweF6fOk+fPr2uri49PR0ueSBtgesdy3DhwoW0tLTPP//c0oH0Fps2bbp3796lS5csHQjEGoHrHcswcuRIGxubs2fPWjqQXmTq1KkCgeD27duWDgRidUDdsQCXLl2aNGnS3bt3o6OjLR1LL5KZmTl06NCLFy+++OKLlo4FYl1A3bEAsbGxDAbj/Pnzlg6k15k8eXJLS8utW7csHQjEuoD5nb7mypUrKSkpz+VjrLZs2LDh9u3bV69etXQgEOsCrnf6mlGjRlGp1IsXL1o6kD5i4sSJEokkNTXV0oFArAi43ulTrl27dvPmzefg6Hnn2bhx461btxITEy0dCMSKgOudPmX06NEkEuny5cuWDqRPmTBhglwuT0lJsXQgEGsB6k7fkZSUNHbs2Bs3bsTGxlo6lj7l1q1bMTExSUlJcXFxlo4FYhVA3ek74uLi8Hj8wEyyjhs3TqfTJSUlWToQiFUAdaePSE1NHTly5PXr10eNGmXpWCwA+vGTk5NHjx5t6VgglgfqTh8xduxYAMBATq+OGTMGi8Veu3bN0oFALA98ntUr7NmzJz8/X//P1NTUpKSkDRs2WDQoC7Nhw4bExMQbN27oW/Lz8/fs2WPRoCCWAa53eoWIiIgHDx7Mnz//iy++CA4OHjdunFKphA909Bmu3NzczZs3Hzt2LCws7P79+5aOC9LXQN3pFWxtbUUiEYFA0Gg0o0ePTk5OTkxMHDNmjKXjsjCJiYnjxo2Li4u7fv06gUBQqVQ2NjZCodDScUH6GnifZX6kUqlIJAIAqNVqBEHQZc6PP/547949S4dmSXJzc//++28MBpOSkoIgiEqlAgCIRCKpVGrp0CB9DdQd81NRUWH4T41Ggx7LGjJkyJQpUzIzMy0XmmXIyclZunTp4MGDjx49iiAI+gPRU1lZabnQIJYBb+kAnkPa/SKhX7YLFy7cvn37wYMH7u7ulgjNAlRVVcXGxqILQJ1O13ZARUXFoEGDLBEaxGLA9Y75qaioIBAIbdtxOByDwbhy5crAER0AgLu7+5UrV5hMJh7fzh85AoFgtDyEDASg7pifioqKtgXC8Xg8lUpNTEwcMmSIheKyGEOGDLl+/TqDwWgrPVgsFt5nDUCg7pif8vJytVpt2ILH4xkMRmpq6gAUHZTw8PDU1FQbGxsj6VGr1eXl5ZaLC2IZoO6Yn+LiYsNEBh6PZzKZN27cCA0NtWhcFiYoKCglJYXNZhtKj06nKy4utmhcEAsAdcf8VFVV6V8TCAQbG5ubN2+GhIRYNCirICAgICUlhcPhGOa/4H3WAATuGzQzMpmMTqejP1UCgWBnZ3fjxg1fX19Lx2VFVFZWxsbG1tfX6+9GJRIJjUazdFyQvgOud8xMRUUFKjp4PJ7L5aakpEDRMcLDwyMlJcXJyUl/w2W4QoQMBKDumBn0rgGPx7u6ut65c8fb29vSEVkj7u7uKSkprq6uqPTAR+kDDag7Zgb9Cnl4eKSmprq5uVk6HOvFzc0tNTXVw8MD6s4ABOqOmamoqAgKCkpNTXV2drZ0LNaOs7NzampqUFAQ1J2BhpnzykePHjXjbP2RkydPjhs3jslk9vF13dzcRowY0cNJbt++XV1dbaaIOotUKk1MTJw+fXofX9faWLBggaVD6EMQs2LpTzNwmTdvXs//++bNm2fpzzFwMcf3r99g/nOhv833nx7CMfu0EBOsPFJkrqk4Q6b6r/rDXLNBOgM//UzRb29aOoo+BeZ3IBBIXwN1BwKB9DVQdyAQSF8DdQcCgfQ1UHcgEEhfA3UHAoH0NVB3IBBIX9O/dedOZeuWpOpGidqMIyF9CS9hW3PaafOOhFg//buexN2K1q3JvElBbHt6Oz7q3RvZSZql6sQiUYNExaESxvjZODGJ5ho8oOCd2WYbNt4ueqYZR3YKBGktuiOtzEYQHdU1iBU0EoPFmWcwpBP0b91ZMcL5pSgHNvXZn6LzIzvDmRz+mtMlKg3CpROapWoMBvPdNK+FEfY9HzzQiNqSicGTzDvymWiV0sKdr7QU3MJTWRgcXi3m070jgj44iKeyejgY0kn6t+5QiVgqsVO3ip0f+UyqRcrVJ4pDneh/vRRgTye0yDVvHiv6MKEswpXhz6X0ZPAAhMDkmn3kM6k8srml8Lbva9u4L8wHGIzg/sWi3f9Xvn+d3//t7uFgSCfpB/kdHQISi4W7Umr2pzc0ilUaHbIlqTqxWGSUtUmrEm9JqpapdHyp+vC9xt0ptWdz+SrNI391M+Z3DmY0qLXIjzO80Vs2FgX/4wwfHYL8c7euh4OfV1SC2obk/TUXdolykgGCtOTdrD69RadSGGVteGd3CB9eAwC0FNyqvfhrQ9I+WU2BfhJz5Xe0Cklj6hF2xGRuzAKAwQAA2BGTuC/Ma05PULc09mQwpPNY+3pHpdEtOVBwq7zFnkF0oBO+vlL59VSvrcm8VTHOY/1sDLM2WTzJ1mRegD31k7NlTDJeq0N4IqUfl3JmRSiDhDOR39mbVt8sbV+PxgfYhjnTjRpTy1sdGMRAB6q+xdWG5GdHSSlraTtDlwY/lwizLhf99iaC6KjO/nVX9tDcgkls54YbB10mv2WUtam9sJsdMYmfniC4d5HEcVU0VSAatdfSbxxGLzWR35HXFjWnn2n30jgyzXmi8XlLcUkGolHbhMYZNtqEjmlM+a+l4JbdsFndHgzpPNauO/syGm6Vt7w+3GnTJE8MBmTVSF49XAgAwGIwRiPRhm+uVB1cFoSKxU9J1duSeQk5zUuiHExc4lKBsJQvb7fLi0NpqzvlAnkAl2rU6MEmJxWLdAjAYro/+PkD0WpK936IozCCPzpOcfJFtJrSf//XdOcEAABg2qy1MRhB1iXOkGlDd+ZicHh1a/ODL8byEraiutMRSj6vKbV91ycCg9NWdxSN5QAAsr2XYSOZ6wEAUDQYV/Lq0mBI57F23bmYLyDgMJ+Mc0dlJdyFviTKflsyr6PxiyLt9UoxK9RuWzKvtFlh+hKHlgd1KSSxUksnGT/OYJBwGh0iVWkZT3d1afDzh7gkXd3a7DL1XYqTLwAAg8N7Lf5SkHm+o/EYDMZr8ZcYHB4AQGDaMYNi+GkJWqUUR+qw2oRN6NjIH+52PiStXAwAwFOe+nOCozAAABq58SK0S4Mhncfa8ztlfIUnm2yYEo7ztTExfrDzk19QJhkPAFBqdCbGmwvU8ayTy5cuDe7XyBvKAAA0t0H6FhyFQfeJ6mg8xdEXS3ySbsdTmAAARK00Z0ztmtMhHfyfdGkwpNNYu+7IVFoa8alFAYdqagMOldjrKwgWGS9Wao0aWxVaPA5Da3P1Lg1+/tApZAAA7NOrFQKjQ1s4LMn4ntTs4GgsAIBGJjZs1MhbAQB4mvGftC4NhnQea7/PIuGxCvVTCxaRXGPeS3Q1r+zNIZe3yQeVNsu92eQ2SaeuDX7+wBJIAACd+qmfgEYqMuMluppXpjh4o4kbVlCMvlFRXwoAoDj69GQwpPNYu+6425LzGqRqLULAPfqa3jT3k6Cu5pVjvVnpVeKcOmmI06M/48VN8gqBYsUIp7YzdGnw8weJ6w4AkNeV6Ft0Krm4NMOMl+hqXpnhOwRLpAgfXjNMVwseXMFg8azAmJ4MhnQea9edMX4293jiXSk17492BQDkN8gOZTaY9xJdzSsvG+Lw263aj8+U/fNSgD2D2CxVrz1dSsRjXx3miO422pZc7cAgLh3i8MzBzz1Mv2gcidZ445B9zAKirROi01b8t9G8l+hqXhlLpDjELa27sqfx5mH7kYsABtN0O56ffsYhdjGebgsAaMlPbS26wx0+m+zg/czBkO5h7bqzYrjTuVz+j4nVR+43sqmEKqFi02Sv1ceLLRiSPYP463z/d+KLh269Z88gNErURBzml7m+HrZkAIAOQbYm8wY701DdMT34uQdLonos2lC275P7n8ZSXQJUonqGXzQ7YmLTrXgLRuU+Z52ivrT03/9Vxn8NAEYjEbAGxXoueiSILQUpNWd30j3DyA7ezxwM6R7WrjsMMu7C/4VeLBBWCBRcOmFiIFsgUwMA8DgMAGCYJ3NNnCuXTgQARLnR18S5urCeHLmkEbFr4lwjXOlGI3vOeH/bW+9HXi0U1otV9nTC+ABbO9qjbDcWg1kT5+rAIHZm8EDAYdQSpu9QUe51RKele4YxA0YU/b4KAIDB4QAArtM/IDs+KuXsMuUdos1Ty0DbsAkElj36hMtwZA/BEkiB7+1vLborKb8PAKB7hjH9h4PH+TZW4EgMFk95fC3TgyHdw8x1+zAYjHnr2Gh1SG2ryo5GoBAePXq7VCB47XDh99O90QUFBK1jQxk05tixYz2cZ/78+UkVcvPWsdHKxRpZC4njqm95uOlFVUvTkK33zXiVfg1ax2ZAlZ+z9ufolwqFw7fd+/5alQ4BAAChTLPjeg0ehxnnD++u+wc53816uHmSfndv061j0qpcduQkS8cFsSTWfp81KZC9MML+z9t1p3P49nRCGV+u1iI/TveBFjb9BZ9XtuRvX5q1Po7qGqCRiZXNVXSvcPc56ywdF8SSWLvuYDFg6yyfN4Y7ZlRLRHKNPZ0wxs/GMHsCsXLoXuFRP6QJH15TNlcDLJbmHsIKjIH5kQGOtesOyiBH2iDHDk/oQKwcLInKGTrd0lFArAhrz+9AIJDnD6g7YMd13smHzZaOAtJNxMVp1ae3qERm3k0K6VWg7oDtN2pOZluL7pzL429Jqm4QqywdSL+htTiNl7BVJaq3dCBA3drcnHa69sLuptSj8vpSS4dj1fSP/M5AQKNFNlys+DetHj2PCnPn/YvGG4cq/tuoVckIDI5GIkQQxDFumdeSr2EGvV2g7lgFDWLViiNFTRLVnMF2J+BNX39DXJJRtv8Thu8Qv5W7ibaOGqmoZM/q+qS9DP9hZiu883xhYd0pbJRlVkv4MrUtBT/ck+lr98TzSaNFkktF5XwFAMDHjjzaxwb32BZ0x3VeiBMtztfmapGwuEnOpROmBHEYZJxEqb1YIGgUq73tyC8GsNHhCAK2XecFO1LH+9teLxUVNMjJBGycr403p/0TUjoE3CwT5dfLdAjw5VLifFhE/JO7URMB94TzeQIyHnt+5eCD5j712qvo1EpRdqKymYcgOrK9h03oWCz+yTJN0VjRWnRH3dpMZNkz/Ieh9qBoRkaUd9Nl0iq1uFn44KpOo2L4DmX4RAEAJOVZrUV3cSQqa9Aosv2j8S0Ft1oLbzu/uFIrFwsfXtPIRGQHb3b4RNSWsC0qQa0o97q6tQlPs2UFxaDHrDoTcLfhZ5xFdFrvl38k2jqi1jwe8z8XPkxsyU+ButMultSddWfL9qU3OLOI9nRibauqUaxaMcJp4yRPAEClQDH/37x6scqfS9HqkOJmuZ8d5fhrIWgBrN2ptZMC2fszGu7zJFQitkqo/Plmzb4lQUv25yEIkKt1zVL1eH/bvUsCUd/lHdd5EwPZ+9IbsmokdjRChUCxEYAfZ3i3LWJV16pafrCgoEHqb0/FYTCFTTJnJnHfkiA/LsV0wIYUNcnP5LS/ZqERcW/GOLdtH+tns2yoA75f+S3LagryflqolbVSnP0Agshqiggsu0Fr/6M4+QEAqo5/V3NhF4HBIdo6KZurtAqJx4IvnMa/jooLL2ErmetefuhzIsteKazTKWXeL/+gaeXzzu0ksZ0VTZUYHD4Jl3N5AAAgAElEQVTog0NM/2EAAElJBi9hK4FuW3X8O3Q1oRbzae4hwR/Fo5ajhtRe+r3q+Dc4CpPi4KVsri47sM550iqPeZ89M2BD6pP2qlvb/x+0DRtP9wwzavRctNF97jrUbAgFPVPWkTJCLPZzyW+Q7UtvWB3r8sl4d3RV8lNS9fbrvDmDuYOdaevOljdKVBf+LzTYkQYAuFYkXH6wYGty9VdTvFApuVQgeHWY47+LAwEA312t+vlmzay/cr6f7j05iK3VIa8cKkCXQqheYLGYy4WCpUMc9i4JxGMxVULl3H9y1p8vR1dJhlG9HV9cIZAnvBGKniYtbpLP/jtn1bGiq2+FmQ7YcBKeSHk0q6ndT82hEtrVHQ92/zueXn3qJ0SjjvzhLoFlj/rg5Hw7s/LYV4Hv7hWXZtac/9lu2CzfN3ZisDidSpG/bUnl0c12Q6cTWPZoyqPmwu7BGy6RuR7q1qasz0ZXxX9DdQ0asi0LR6aLSzJyvp1Zn/gPqjsAiwUA1Jz/JeSzBKpLIACg+uQPvLM7ai7udp/9sWFILfkplUc32w2f4/PqFiyeiOi0lUc21V7YzfCOZEdONhGw0UcT3r/UUWKY4uDVVnf0Dmd6Gm4eQovemOEH/TxiMd1BH9nobUkxGPDBaNfXhjlyaAQAwNwwu5mhnODHewXH+duyqfiHtVL92/E4zJo4N/T1tGDOzzdrAu2pk4PYAAAcFjMpiJ1YLKoQKPwe18Yj4DCfTfBAFxTutqTXhjl9dbnyZnnLlCC2fs6CBtndytY3Y5xR0QEA+HEpK4Y7/ZBYnVUjQX0OOwrYkLF+Nnc/iOy1n5y1oBY1ACxWb4dM4riGbbyKI9MBAHgqy2vxl6zg0Wg9XyyRzBk6vbXojpSXb8N6tMZ0iH0JvfMiMLkM/2HCrMtusz5E387wHUK0cVA0VhhezmH0UlR0AACuM9fUXftbmHXZSHfqE/disDjvpd+gd08YLM59/vqGm4cbbx5iR042EbARQWsO9eQnI7h3vubcL3bDZtsEj+7JPM8xFtOd4R5Mfy7l+2tV6VWtY/xsR3qz/LkU/Xd4bhi3Wao+l8evbVEpNDqtDtEhQGJgVOzNoegdCFH/9gD7J6kWFhkPAFBpnxikBtrT9CfaAQAB9lQAQAX/qVIT2XVSAEA5X7ElqVrfWMpXAABy66VzB3NNBDwAcRizvOTvD7LWj+ZEz2AFjmQGDNdbYVGcfCmO3uLyrIYbBzVSEdBqJZXZAACtXKJ/O8UlQP8aT2UCAKgGLTgqC1E/tZmA7v1EyjFYPMXRx7CqH4q0KhtLotZefuo8PY5Ml1blmg7YjNRd3VN5ZDM7YpLva9vMPvlzg8V0h0zAnlkR+k9a/dlc/hcXyhEEeLLJH411mxlqBwDYfp23LZlHIWCDHKhMMh6PxRiKCADAUETQJ5UUAs6oxRDm0/dTaIEKufopx3VU14qaZI2Sp37jI1zpFALOdMADEO4L88lcj/rEf5tSjtZd/hODJ3Cipnm+tInA4CgaKwt2viyvK6Y4+ZHYzhgCSd1mXx+OaJiSx+hzIo//bfxfiKMyn/oniapTKcDT3hFahQTRqkU5SYaNJI4LlkA2HXDPfxoAAESjLjv4aeONQ86T3/KYu66dAmGQx1gy70Un4VbHuqyOdeFL1Uklot0ptW8fL3ZmkQg4zI+J1eP9bX9f4E9+rC9Dt2b25FpGbvAylRbN8ho2ormeVTHOHdX56yjgoe5PZTe7kVfupzD8ohl+0YhOK63Mbr5zoj7xX7WYP2jt4fJD6xUNZcEfxTMDRqAjG1P+k/yztifX0j7tBq9VyrAkqtFfGDyFqcMTQz8729WAjYZ1Na+MVigs3P1GS+4NvxU/2w2f08UPN+CwmO7wpeoqoRLNpHBohHlh3ChXxsid95NKRE4MIlqBTy86ZXxFXauKwe1+tKV8uUKt009Y1CgHAPg8/RQ81IkGAMislhjqTn6DjC9Vj/BkiuSajgI20p1u5JX7HYhOK68twjM4RJY9Bouje4XTvcLVYkFz2mlEo5ZWZlOc/fWiAwBoyUvp4RWl1bk2oWMfX10jry9tW9GB5hHCzzyvbK4m2bnpG5vvnmT6jyCwuCYCxuCful/uRl655K/3W/JuBr6/nxU0soefdCBgMd05kNHwU1L13iWBY/0e3WNnVIsBAE4MohOLCAC4z5OgeeIqofL9kyWODGKLovsVbOQq3Zbk6k/He2AwoEGs2ptezyTjY7xYhmMC7KnR7owTD5umBbPRqOpbVW/HF0uU2pR3w00EbHStgZBXRtTKnO9m070iAt7+E03NahUSWU0BgWmHwROItk6KxnJ1axOByQWIru7a39LKhwAAraz7tUAakg9woqaRHbwAALUXf9XKxZyoKUZjHOKW8zPOlR341P/NX3FkOkCQumt/Vxz+wnvZd9wRc00EbDRPV/PKwofXmu+e9H75Byg6ncRiuvPGCKfU8tZlBwpcbUh2NIJApq4SKsf72y6M4GIxmHAX+q6UmqtFQjwWUy6Qb5vlm1Yl/utO3ZL9+R+OdevE9MbEerPuVUuitmQ6s4iFjTKVFtk529ewDCnKL/P8lh8sWHagwMOWzKLgChrlNmTcP4sDiXisiYB7/tNYuDcvt14KAECLhS3cm4c+ets0yXNumBnmNztYEtXn1S0lf67O+CCM4ugLAJDXl2LxRN8VPwMAXKa+U/zbW/c/jaU6+SmaqymOPoHv7c/6fHT16Z8UjRUEVnc+ETdmwcMvJ5O5HlqFRNFYwfCOdJqwwmgMK2ikx7zPqk5+n7kmkuLkq2ptUglqHUYtsR+1GIPFmQi4h9Sc+xkAUBX/TdXxbw3byVyP0PXnej7/84fFdIdGxB19ZdA9njinTtai0HCohAhXepDDo3KRp18PuVQoqBAoWGT8OH9bJyZxnL+tnx1FodHZ04nvjHRxNFhlsMi4NXGu0R5P8o5+XOqaOFc/7pPikzgs5sgrg66XiAoaZbND7cb523o+3jLz/igX98fVHVxYpMtvDk4tb82rlyIArGaTx/nZkPDYZwbcQ6YHc6LdjbfAAQD87Xu9fma34URNZQWNFOUkq4R1GAyWyHGxDR2L5oY5UVOpm6+25KfqVHKqaxBrUCwGiwv++ERr4W2KgxfBxtF1xhoix0U/FTtyEsnODXV6R3EY+7LR5djhE+xHLhQ9TNTIWyiOPrbhL2KweLRUjuuMNXpDeOfJb9kNm6Xfr8wMGK7fFmgi4B7CfWEea1Bs23ZYU7QjrN3X3Sx4fXk31pu1b0mgpQPpLazZ173n1Jz/per4t6Gfn283sfIcAH3dIRAIpNeBugOBQPqaAXFuzTCDA+l3GGVwIM8BA0J33hvt2olRECsF3exn6Sgg5gTeZ0EgkL6mP6130qrEN0tFS4c4WNYDNLtOerlAgL6eFMQO7p0CO1eLhA9qHp2iXDumO1uWrBDe2R1krrvdsNmWDaPu8h8auRg9j9p2E5BZ0CqltRd/Q19Tnf1hGR8j+pXuVLZuTeZZ3Hs4u1a6NZk31J3BJOOHGWwa4kvVBzIa3G3Jswd37aRos1SdWCRqkKg4VMIYPxu0FGqNSPmgVlotVBQ1yZ8b3ak5s501KNbiulN7+XdEo6Z7hROYj3cwIkhr0R1pZTaC6KiuQaygkaiDRydpLbor4+UjWjXZ3tMmOA6DJyBarbTiAQBAlHOdHTER6o4R/Ul3rIovJnpEuj7Z6XefJ1lxpLCuVTXO37ZLunMmh7/mdIlKg3DphGapGoPBfDfNa2GE/cvRji9HO/55u27jxYpOTAPpGjSP0MD39qGvtUpp4c5XWgpu4aksDA6vFvPp3hFBHxzEU1nPmgZoJMKCn18Vl6RjSVQMFqeVi0l27v5v/kr3CkfnT3vnud011hNgfscMHMhomPNP7qxQO0Mn5s5QLVKuPlEcaE9LXxuVsTbqwYdDhnswPkwoK2qS91qwEGMqj2xuKbzt+9q2oTtzh2x/GPDOX9KK7PL9nargXvznanFppu/r24ftKor+pSDw3b0qYW3Jnnd7P+r+TV/rztUi4Zak6map2rCxSaLeklR9rUiI/rNCoPjvXuMvN2uO3m+qFCranSe1vGVLUrVA9uSkaLNUvSWp+nZFq76ltkV1+F7jzhs1+9Mbyvjtz2MWdtzgbZvls/5Fj66+8WBGg1qL/DjD255OAACwKPgfZ/joEOSfu3W9E6kZqD69hZ9+xqiRn5ZQfXqLVilFHSGED67WXfmz7sqfwoeJiE7bziyIrvr0Fn7GU2eX+Olnqk9vMRwjyr1ee+m32gu7hVmXdZpeqSmmVUgaU4+wIyZzYxagrhrsiEncF+Y1pyeoWxpNv1cjEbTk37QbOp37wnz0vbZh49kRk+T1pSqh5et5WTN9fZ+l1Oi2JvNsKPjXhzvpG08+bN6azPv7pQDULHlXSg2HRnBiEquESolK+8WLHoaDUVLKWnbeqJkZaoc6vaO6szWZBwAY4ckEAPx+q/abq1VMEs6LQ6kWKdedK1sV4/zZhHakYW9avZEO6hkfYBvm3I4PphH/LR/k063CEqnlrQ4MYqDBIS9XG5KfHSWlrPvntnsbwb3zDUl72VFT9BkQRKspO/gpie3sNnOtorEy78f5KlE9xdkf0WlR66+Qj4/j6WzDSRBEx0vYyomewRkyVd/ITz/DzzznNnMtAEAlrCvYsVzKK6C6+GOwOFlNIdHWOej9fW092OW1Rc1tdBAFR6Y5T3zT9McRl2QgGrVNaJxho03omMaU/1oKbtkNm2XivXg6e/jvFTrtU788jx3du5AeGoD0te68GMBmUfAJOfyndCe7iUMjjPOzzawW/3yzZlao3c45vjgsRqHWLdmfv/ly5fQQO3RF0ElSylo2X6qcM9huy0wfIh6r1SGbLlXuTqmNdGVMDmIbDb5UICzlt39f48WhdEZ3uic6AIBygTyAa3zy04NNTioW6RBgndUluCPmVR77qrUglTVoFNoiyknWSISu098HAJQfWKdqbQz9/ALNPRg1iCjYsbz69FavJV916SrFf7wtb6wI/TSB7h0BAJDXFed8N7vot1Vhm64ajVTyeU2pR9udhMDgPFN3FI3lAACyvZdhI2r8rGgof3agGIxhJRx1a7PwwRWGT9STjDWkPfpadwg4zPRgzsHMhtoWlTOLiPoZP6yVrhjhhMdhWBT8l1O8Rvuw0FJZZAJ2egjnTmVrfoPUnt6Fo7170+pxWMw3U73RhAsOi1k/wf3wvYZDmY1tdefQ8iBzf8rOIlZq6STjP4wMEk6jQ6QqLaNNlzVgN3xOZfw3zeln9LrTfPcUBodHn1LZjZjLiZ6Jig4AwHbwODydjZrvdB4Zr6C16K7zxDdR0QEAUJz8nCasqD75g6Q8i+4VbjjYJnRs5A93u/1xtOgDdcpTf13Q8jgaeddWnVqltHDXGzq10mvZd92OZ4BggedZ88O5BzIazubyV77gBABAa5MvCOcCAHztKN4cSlaN+GBmg0iu0epAdq1E73zcebLrpFQi9o/btYaNdCIO9bixctBTyVa51gEAAKKNAytopCDzvPfSbzE4vE4lF2Rdsh08HnUp5o6Yq25t5meeUwlqdWoFotUCRGdo594ZpFXZ6ErEMN2jqC9FXQeNdKentHsIHOnyf4JKWFew82VFY2Xgu3tpboPMFt5zigV0Z4gbw5NNPp3TjOrOqezmYEfaIEcaWq7v5UMFaN0rZyaJhMc0iNvPvJhGotKqtUhSyVOOvC42JHIXnzf1NiwyXtxGUlsVWjwOY+T9bFVwX5jXknejJe+GTehYQdZlnVLGjVmAdvHObOclbMOSKFTXIDyVicHiu5EP1iokAABZbZHq6cwu3TsCZw67HENwNBYAQCMTGzZq5K1dcs8Rl2YW7noDSyCHfHpaX2wHYgLL7N+ZG8bdklRdJVS2KDSlzfJNkx+V3Fx/vryMr4h/NRjNDQMA/rvXuPZ0p/5aolbtKEwSnojTnV0R2pk39jyv3G28OeTyNqml0ma5N5vctiSG9cCJnFxOojWnJdiEjm2+c5LA4NgOHocWAq0+9aNt2Hj/N3/HEh8dxM38cGgnp0Ufh+lvc5wnrXIYteSZ7+phXpni4I2urVhBMfpGdG3V1r+5XVryUwt2Lqd7RQS8vQcafXUSS+mO3Zak6ov5gmapGo/DzH5cCia7TurPpehFBwCQUt7+PTbqAShWPNEaw6p+IU608/n8apHSzeZJFceTD5tHeDIdmcZ7nXueV+42sd6s9CpxTp00xOnRYYviJnmFQLFihPHzO6sCS6KyoyYLsy5rJEJRbrLjmFfQgrzSymwAgP3IRXrRUTSUqYR1eCdjK0UMFo/B4rQGqwxEq5Hx8tHXNI9QAICkNNNQd2S8fLWYzwwYYbSTuId5ZYbvECyRInx4zWH0Un2j4MEVDBbPCowx+VYAAJBW5xXsfJkVNDLgrT1tfZohHWEZ3fGwJQ91Z1wtEta2Ksf72eqr3zkxieV8RZNEzaUTdAj4+24dqiYtcuObER8OBQCQkNuMFngoaJTtT39SoWn5UIdzefxPz5b9Ot+fTsIhCPj7bt0XFyq+m+a9bKhxjZrezitvS+axqfiXo9uxcVg2xOG3W7Ufnyn756UAewaxWapee7qUiMe+OszaPR+4I+Y13YqvOvk9olHrb7KItk4AAEnZfXbkZACAsrmq5K/3iTaO7SZoyQ7e4tIMlbCOaOuE6LSV8V/p1Eq0i+ocwPCLbrpzgh01zXbwWACASlhf/PvbWoUk/NsUI93pYV4ZS6Q4xC2tu7Kn8eZh+5GLAAbTdDuen37GIXYxWtWvtehOS36q3dDpFGd/4zcjurK9HxJtHf3f/A2KTpew2DmJeWHcdWfLdAj43GC73TuxLm8dK479+b6fHbVapPDhUPYvCRz9S9ZPSdUVAoVh7b0JAbbBjrQ/btWdzeWT8Fi+VLNzju8rhwp0CAAAjPRmfTbB4/vEqsifMn3tKE1SVW2LakmUw+Ioe7N/kOulorfji9HXKo3ueqko5Pt0AIADg3jtrTAAwLbrPD87Sru6Y88g/jrf/5344qFb79kzCI0SNRGH+WWur4fVuwWxgmKItk4N1w/S3IP1aVSbkDi6V3jNhV3CB1cxeLy8odz3tW3i4rS6q3/lb1viNutDwxlcpr5T+vfa++tiyPZeKmEtKyjWbtjs+sR/AKIDGKzfyl8Kdiwv2LGMzPXAUVnymgIczSZw9T+GD63NhfucdYr60tJ//1cZ/zUAGI1EwBoU67loI9rbWnSXl7CV6hrYVnda8lMl5VlYAqntvaT3su8NtyZBjLCY7swMsWsQq7AYzDi/J7Vipw7iXH2LmlreIlfrghyosd4sHBZz4rXg2xWtXhyKHY2wJs4VdXQnE7DnV4ZeKhRUCpRMMm5CgC2HSlgT5zrU/dE92lsjnWeF2l0vFTVJ1LYU/HBPpr5WunlxsyG/2p6mMEiPfrYLI7h59bKO3j7e3/bW+5FXC4X1YpU9nTA+wNauX9Q+xmC9lnwtrcph+g970obDh6w7Lbh/SdFUgaeybAePI9o62Q4eR3Hy06kURJa9y/T3yVx3dDB3xDy6Z3hr4W2tXEx1G2QTPLol/yaebovodBgclsR2GbzhcmtBqrQ6DyAI2X61Teg4LIHUcUDdB0sgBb63v7XorqT8PgCA7hnG9B+urwjI9B9G5nq0m88mcVxcZ6xpd06Ko3dvhPrcYDHdYZBx7R6z9uNSjAQi0pWhP4FpWHQBj8NMHfSUgbzRhM4s4kuR5l/gGOHNIZs+L+5rRzH9cIpNxS8wRzGcPoYdMZEdMdGoEYPDG/2dxxIpDnHL0Neu094z7KI4+VKcfPX/ZA0apd8TBADAYHFGLb0K03+YoYbqoXuG67Rqmsfgtl1kB290dzWkq1jXc+XnEiwG8+YLz0ON0IGJvL7EY+46ArNr3iYQ00AfjG6y+VIlk4xfOcJppPcz3BK693Bqb1r9tWJRdQfHYiE9RFqZXbBjOYHJ9Xl1i+mRNPcQmntIV+fXyFpL/nwHAKBTQmuBdoC602UWR9n3Rn7aCNR/p7evMjCJ+imzty+BpzL1/j6QtsD7LAgE0tdA3YFAIH1NP9OdtCrxlqTqBnGvWEBBegne2R3Nd09aOgqIFdHfdKeydWsyrx7qTr+i5sz25jtQdyBP6Ge6A4FAngOg7kAgkL7Gep+jl/MVN8taxEqNhy15vL8tmdC+RFYIFHcqWpulans6cZgnw/Bkk1KjSywW8URKHYJ4sMljfW309R5MdPUEtLLgqhgXuVp7uVAolGncbUkvBtgaTl4pVNwsbRHINCwybpgH09Bcub+DaNTC7ER5fQmezGD4DaW6tn/gFtFqRDnJjwxGHXxsQkYbHvWU1RZKSjLVEj6eZsv0H264odlEV/fQKiS1l35vW1dPcO+CtDrP+cWVOAoDIDpR3k0ZLx/odBQnX1ZInOEZMbOHNECwUt3ZklS9/TqPTMA6MIjVIiWbSji0LCiozVfUhAl8QaNs4b95rUqtnx0FAaCoUWZHJ/y3fJAfl2Kiy2j+rlrzZPEkW5N5AfbUT86WMcl4rQ7hiZR+XMqZFaGoaen316p+uVnDIOO9OeQakbJRop4fzt06y9c6rZS7hKKxMn/7EkVDOYnjqlPJ1WK+49hXvJZ83XaYCeP3sgPrGpL2EdnORJa9SlCraml0mrACPaJposuQLtnx4Mh04YMr9Vf/so2Y+ERNEKT80Od4CtNt5lrT9vKdDAnSFmvUnaQS0dZk3uIo+2+neeOxmCqhcuZfOf93tOjG6qcMLk2bwP+UWK3WIXc/iEQN4Xki5cy/cr66XLl3SaCJLqNIumrNg54l/OZK1cFlQWjvT0nV25J5CTnNS6IcLhYIdt6omRHC2THbl4jHIgjYdKniz9t1Ua6Mtu4c/Y7iP9/WSEWDv7hA8xgMEF3ViR9qzv/M8Iu2i55pOMyE8buMl9+QtM9lymr3uZ8AAACCVJ/+iXdmO3fEHAyO0FGX0cmprtrxOIxeWrbvY8G9C/o4W4vvqoR1zi/+n2l7eRPRtnuYC2KINerOwYwGPA6zYaInHosBALjbkrbM9K4QKGUqneEw0ybwDWI1FgMoj+/OXG1IV1eFoSbqJrqM6J41z6JIe70kzQq125bMK21WAAAOZTbisJivH7vNYzDg0/HuBzMbjmY19XfdkfHyJWX3Xaa88+grh8G6TFuNpzKJLOON3SaM31WiBgAAjvR4VYvBuE7/wHHcawQGR5ST3FGX0fxdteOxGzar8sjmxpv/6XWnOe00Boe3GzHHtL28RirqZEiQtlij7uTUSd1tSIZCMNbAK0OPaRP45UMdPjhVMvrnrBkhnJHerOEeTNvHlbZMdJmFwc40/WsmGY+mkwAAefVSVxsS2+BaRDzWz45a2NihS0Z/QVqVAwAwTOjgSDTnyW+1HWnC+J3pP5zi7F918vvWknTb0DGsoJEUZ3/0a2yiq4fgyHS7YbMabh5W8nkkjiui0wgyzrHDJxIYHFF2ogl7ee7wub0U0kDAGnVHotI6MZ/ttGLaBH5+ONeDTf43rf5oVtOft+sIOMy0YM6mSZ4cGsFEl1nip3bgeiFRad2oxpegErEyddeqZVghqBO73t7UBCaM37FEcuhnZ+oT/+Gnny0//AVAELK9p9vsj+yiZ5ro6nnw9qOXNNw42JR61HXGmpa8m2ox3z520TPt5Xs1pOcea9QdBgnH7yCba8gzTeCj3RnR7gytDsmuk5542PxvWj1fqj68fJDpLkPMa/nOJOEFMuPZJEot3YpLR3QSHJkBAFCL+aaHPdP4HUemu0xZ7TJltVrMF+Uk1Z7fXfzH2yS2M8N3qIkuw0t0w+ad7hlG8whtuhXvOmNN893TRFsnVvDoztjLdzIkSFusUXdCHGkXCwQ1LUoX1qNVz63yltx62fzwp8yxTJjAa3VIUZOcQ8XbM4g4LCbchR7uQhfI1KezmxVqXblA0W6XWosQcE89WDKv5XuIE+1KoUBfsBAAIFfripvl4b1pHd83oE4RkrL7+q8ootPUXvqd5jbIJmSMfphp43e1mK9sqkKTKQQGhztiHsM76v6nI0XZSWQH7466jL7k3bN5R7PL4uI0wf2LTuNeQ5/rm7aX10hFnQwJ0hZr1J2XohzO5ws2Xqj4ZZ4fCY+ta1X9L6FMotQa2YmaMIFXapDZf+dEuND/XBiA5okkSm1Bg8yORtAhoKMuI9Exu+X70iEOlwoEX16u+HmOHx6H0eqQjRcrFGpdH7hq9DZU10C6d0Tz3VPcEXOZASMAgtRe/K3q+LeeL20y1B3Txu8N1w9Un/op8N29qJc7AEBcmoG+y0SXUSTds3lHs8ulez/SKiTckQsffSiT9vKdDwnSFmvUnbF+NmviXLdf5w36Lt2ZSawSKRkk3J5FAfindcG0CfyWmT6rj5eE/Zjha0dBi1IR8dif5/hSidiOuvrgc60d47b9Ou9mWYYXm1IhkAvlmhUjnOaG9T+T07b4rdiVv31J7g/ziGxnRKNWtzZxomc4jn3VcIxp43fnyW+zAkcU7FhG4rgSmHZqsUDZXGUbNp47ciGiVbcWpLbbZZbgH2WXbxxkBb6AFkd/9KE6tpd3mvBGr4b0fINBkHYLtXZ3Ogzmt/n+00NgVr9PWXmkiDJozLFjx3o4z/z585Mq5P6r/uje2x/tV64rxpHpdO8IumcY2s47u4PMdUcLqCNajZHxu04lb7oVr1MpOEOmEtnO4rJ7ssocjbyFQOfQvSMMn5GZ6Oo5gnsXCne94bfyFzTOJx9KpzWwl/cwspc3S0j89DNFv71p3m+ilWON6x1IPwWDJ7AjJoI2Zu+Gdu6mjd8BAAzvSIZ3ZLvzm+jqOU234glMLidqmlG7aXv5Xg3pOQaeC4VAQMP1A4L7F12nvwfL7/UNcL0DGdBUn/yh6c5JZXMVO9zjMckAAACcSURBVHKK45iXLR3OQAHqDmRA4zb7I7fZH1k6igEHvM+CQCB9DdQdCATS10DdgUAgfY358zt/3K47k/uMczoQ83KPJ44xPlvWTcSl94p+XWmeuSCdQyWos3QIfY2ZdWfevHnmnRDSGWIGgREjRvR8HrNMAukynt4g0tvSQfQpZt6vDIFAIM8E5ncgEEhfA3UHAoH0NVB3IBBIX/P/KaXZtsN6onMAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_data = StringIO()\n", + "export_graphviz(clf, out_file=dot_data,\n", + " filled=True, rounded=False,\n", + " special_characters=True,feature_names = ['Income','Credit','Gender','Unemployed'],class_names=['no','yes'])\n", + "graph = pydotplus.graph_from_dot_data(dot_data.getvalue())\n", + "graph.write_png('graf.png')\n", + "Image(graph.create_png())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Titanic" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "titanic = pandas.read_csv('titanic_full.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
88688702Montvila, Rev. Juozasmale27.00021153613.00NaNS
88788811Graham, Miss. Margaret Edithfemale19.00011205330.00B42S
88888903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.45NaNS
88989011Behr, Mr. Karl Howellmale26.00011136930.00C148C
89089103Dooley, Mr. Patrickmale32.0003703767.75NaNQ
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Name \\\n", + "886 887 0 2 Montvila, Rev. Juozas \n", + "887 888 1 1 Graham, Miss. Margaret Edith \n", + "888 889 0 3 Johnston, Miss. Catherine Helen \"Carrie\" \n", + "889 890 1 1 Behr, Mr. Karl Howell \n", + "890 891 0 3 Dooley, Mr. Patrick \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", + "886 male 27.0 0 0 211536 13.00 NaN S \n", + "887 female 19.0 0 0 112053 30.00 B42 S \n", + "888 female NaN 1 2 W./C. 6607 23.45 NaN S \n", + "889 male 26.0 0 0 111369 30.00 C148 C \n", + "890 male 32.0 0 0 370376 7.75 NaN Q " + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Survived\n", + "0 549\n", + "1 342\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Survived.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Sex\n", + "male 577\n", + "female 314\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Sex.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Cabin\n", + "G6 4\n", + "C23 C25 C27 4\n", + "B96 B98 4\n", + "F2 3\n", + "D 3\n", + " ..\n", + "E17 1\n", + "A24 1\n", + "C50 1\n", + "B42 1\n", + "C148 1\n", + "Name: count, Length: 147, dtype: int64" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Cabin.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Embarked\n", + "S 644\n", + "C 168\n", + "Q 77\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Embarked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_4882/3535274200.py:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " titanic['Sex'] = titanic['Sex'].replace({'male': 0, 'female': 1})\n" + ] + } + ], + "source": [ + "titanic['Sex'] = titanic['Sex'].replace({'male': 0, 'female': 1})" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "X = titanic[titanic.columns.difference(['Survived','PassengerId','','Name','Ticket','Cabin','Embarked'])] # Všetko okrem\n", + "y = titanic.Survived" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeFareParchPclassSexSibSp
022.07.25000301
138.071.28330111
226.07.92500310
335.053.10000111
435.08.05000300
.....................
88627.013.00000200
88719.030.00000110
888NaN23.45002311
88926.030.00000100
89032.07.75000300
\n", + "

891 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Age Fare Parch Pclass Sex SibSp\n", + "0 22.0 7.2500 0 3 0 1\n", + "1 38.0 71.2833 0 1 1 1\n", + "2 26.0 7.9250 0 3 1 0\n", + "3 35.0 53.1000 0 1 1 1\n", + "4 35.0 8.0500 0 3 0 0\n", + ".. ... ... ... ... ... ...\n", + "886 27.0 13.0000 0 2 0 0\n", + "887 19.0 30.0000 0 1 1 0\n", + "888 NaN 23.4500 2 3 1 1\n", + "889 26.0 30.0000 0 1 0 0\n", + "890 32.0 7.7500 0 3 0 0\n", + "\n", + "[891 rows x 6 columns]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 1\n", + "2 1\n", + "3 1\n", + "4 0\n", + " ..\n", + "886 0\n", + "887 1\n", + "888 0\n", + "889 1\n", + "890 0\n", + "Name: Survived, Length: 891, dtype: int64" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "clf = DecisionTreeClassifier(max_depth=4)\n", + "\n", + "# Train Decision Tree Classifer\n", + "clf = clf.fit(X_train,y_train)\n", + "\n", + "#Predict the response for test dataset\n", + "y_pred = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.7821229050279329\n" + ] + } + ], + "source": [ + "# Model Accuracy, how often is the classifier correct?\n", + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "person = np.array([ # 23 ročný muž bez detí\n", + " 23,\n", + " 100,\n", + " 0,\n", + " 1,\n", + " 1,\n", + " 0\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 23, 100, 0, 1, 1, 0])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "person" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 23, 100, 0, 1, 1, 0]])" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "person.reshape(1, -1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: [1]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "print('Prediction: ', clf.predict(person.reshape(1,-1))) # Prežije?" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ui-cviko1", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/graf.png b/notebook/graf.png new file mode 100644 index 0000000000000000000000000000000000000000..ff0c7fd7ada7901096053c9fa4d7aab7d7fc9dcb GIT binary patch literal 57659 zcmZ_#1yogU^ezf-x=TVjq)Vh@Q_>C69nvD*t&&QMba!{RNVhc7;HEpIj< zE6Peip8xyF?kI|fK&T<|Qg1cA(hoB%4K-C?4p?I((kC7t%OGjKfxr>I(?tCEuBHtE zLsPt(5cT@1xVwW$8wiU2N>v6Ug*G@btYXX%bgOTf&`jDUckEel6N zr}m~w2?sso{ePFq$jHRR#Qx{s1-iuH+db@ISIlME51K~l94;$SxX#sB%t|Jwln zum5oW2*>u`KH8ID04o z9?@N=NFu+ySGT%I

2Ubb{Z2x@_^X2feImXfIkK_KctwAcO;oK5Kf3WM>X>QFzYbm-V#bXbDrpwu> zha2`;SN!EIEhB&2YBARbwiyb!Yw;B`_#^v@u%rp4h#1avKF`(E442YHP4O{B#jCdc zGrsiz=YYnM4pV~EAq{HPITey^8^Mhk2!K zHklkX&YTI6#@8*|?e;r+Pzu#4O%ukva_1{~H?c|tt{0zgDHw2_{wnGFjb4V7U8e_T zXLFK9b(_A?^>)wbcu7e*VVrzUfBwkL0r_;Yg>NE?*u=xze%A4LwpA5!qKQr~dVVy$ zw3D?ge1E$#a@DAP$DQ=@8S}iA(&_K$jwi=ZzQ>(p{X_H#;dMCmbN?NwqiRyM_{p&( zef*-iL>85a^t%i3|27qEZC6@F z>x2hgq=`NL{5RuCqCh>Uz0&m@H|fNA&&%zWQm4n()tyll336is74$A#se2x0><=!B z;!L)%)zMS;`nb~GeraJV&C7!vpB2Z##NxcG|0(|qI%It$%rvGV0uI78Ogc+g0RL_)1fsabrRhzvc=`OwO}0S=41d4tNA4TFOxRgM^lHnf=XOZ$o={DufcO+(dS<+c-0d;-KPBmX4xj@Q&gT8BiHlPXI13E2EAqrRbns_ zs*j6L+ubH)VPVICoOT5aA3RJ(8<96}Ho30$w(bwp@@KgVFD@_Oo(+p#o^{mU5WnRd zvb~^Csz~}KH|*iVF72HHfpC%_`Or@JzH`u)eJ;Ecg6CJ25Aaa`D5Y$f5}W)ZbJ9(P zQULzT15z>cv7ogb5kmcn`9epPfYj)nq0W^duHcrr|9ne^{7>3aDo!@#_`|ye2hcl%jZKaFP)4g8DykL?u?f8?YeiN8m+3_ zy!_ zL47oJ6`2Bx!>qKq2#`UAuP6|L9ZPTDr_5}^Z3_s*MZJsGq#$9&CQOa#M|r8XqdQ8- zCz)%ynw32*>i%fL$whqw0v;LsTco680hXddEXWPz;|A=i07NH4?~4poxq2OE2^j)4 z&%20E;R4DWPv|&VkRw-Da}mh8^)^oEkBZu8Q7B4IV=X4+=hMzImg=qr%e=@z`nX*b zH~PP>gL;?5*yj3@f9liTiXpxELhdq@iTrc(lVoZ82M|a)MP?p|3Yh`qZyhK3-WWIE zuKzQKzL&^SHEC{b%8`)4{%>UPfa3axYgMZKQr11okp7}raict20X`21B%6%a$psG% z;!57A++Z+SGi#S+0QoexE#qS@Y47gX)8p!ts?WjOV62}UkGCJlcr%HWHR2$I%&^UO z^>@_D%=zQx_-3twT)%>EJKk8hTxoE+x@v2DtOhb{q_``-aO2?f&D9K&N}@?7q+u9mZ9$m)#RS6? zo&$wq*5W)1r{q`-TJ{y}fmnn=-5}t&uYX&sz}bsuvnP(O{fjnDB+%O#NVp&PQvSft z>xzkMw`Q-sKu&-EzUU2zW4VSFi23PvymyO}M}L^n{Q73O!8r#QqgzynYxShQ0%CzfP9FUKzVj`zbq0xdJ= zz4(BQ%P@!5!{`Xqy?W317Db`Xs&o!_hd@=vi zw*8!9K^a5suT0eS6Bm;yMywvXWG|3{7xh!q$jE|w^RJ9AH`ihN14qG_f$O4tfuAID z)&pJy#SF~RZ!Qxz$BYfajn`4*4w@pkqriX0faxHc#{2} z*T^V|Fpjv@%*ww?){hN8eJ4bGpW~=g%gDW8ps}DKVQbkBo@d3j zvXRqwmX%1NF= zLnMo4cra+UtCNR*ShZMYU_tqtlfz6c^!>amqw{Ti0^8y;!3O)i0!gxjhJOVFT5Yyo zN4p+8-<J{0c#6=1| z=T?uds1a>2|C7M~_0n<&1xrk<3kHLApLpW_{{6eU!SX3nx*Vh~_}S`AYoejB0!I91 z@BWl=*v8Atw#~}&3Nfqm8Q4O2Z*sLQhV~iSxBP%8h428e0W$*w*9!pK2X>{w^p^c9 zHB#EN!hK9X@cllNGz98^Xw!yre z5XO>|G9Q@foUXpHhfZ(5k{(Yyc1qNtqOU5&f_NSIl0mBfY@xpsM}<&V&{E_V!rrDCcQcjdOWrJ9PcQ7ieG4F}|)s z-JOm$T!HntQZz=T2q%cz#XmhpG!>Qo$X(Pbsz?`Zw|G&~&Sawgwy%dV@@L7xXtOsUIlI7!7-F*f%_gxq^&OpMElrp>WF15$dp9Th{(@}wmGP~o{#}I3 z=+aB0S#E;(cZbDLfYeh8`vQwNS2NQRgS$8L z6J{=^;=2Ox#6Q@@>rfTgn?}-k3eA!Is;O~xa!!KnxVZ}AqRwPIy}-XCk1#i=?LoU` zX0hE%%4 zVJ~Z?3tT9}vFj&3@qx~acH-ITxvzd6RO@Q6wHa^ zoqe#tUhSRnLtRN{bVkPQeV#-p{^?`JllqS|W)^nYtQV9bljUTANKupZ6N8Byn7;q8 zaE%hI!B84U+PlQ5ZXcx?;s5}0$9Jw^kDU759vQoJuH1Dno4le*cZY{i;|#v0S`8+k zD=T4xHdzyrK{IpwSP*|fz=EfyW`3USy!jkvQcV^pjAE88xe24;<9(ye@bN=&kEt^S zYmbRoBf>y`r=RK$0uQ#zYp#@fmn`VZI2_2Qep4a`K{_UeTV@_yNVc`GKR}q^;_DGi zOFkv4hGAW4eR(4(g~od*L5^eG%Wl7rc zVi*MYlC|7AjTf+4cU;A{+WO7`b8Pp@n3;4h2KspsQ(~BHf|Sm^eDH)B zshKdW#r8(sa{Uu!qWiIQMFHf{6C#gNYmL-U|LMrdIXe&i*T!MRk@;VSSK?9VUE~d1GfbPGKJfG=`kcX@n5XCUmXLS(pPtUZ(4C-)CvN zM(!OV1%V9b^}k+#F)=;)R;gga?|e~?R?zps%zTucSlIj^cbCzGtPd6l8ys$O*7|0!ikQ|5avsDqopo&_jgy%I7zqr=dE4O=O+l zhqK|1O(?B2{e;a#TPA(k)T1DUnIP_~bPY}@DMv(#uL8TZP2Bd?D zb}Zo_y_N|wsyumPP`|3?k+QwW6bs6Gnqq3!C>^zhpMHFw(~4SZXc#WN!7((KZ!Rz= z4ze(^B<#BmDXS=ZTZEn6~c`nt=Wi@QnC5ib_t zNJB3si!s`7rqZ^Q->7lFIG>6KGyF}g6d+TYUEG^v2M6$W1x0CMVw5VbI|kZeA^h16 z&`C@gK5T6Le>SAyHdAxa;?$SGqiBJncgHv^l>ce42;=5r@pe0F25LmVHU?mEChn`+ zM(=zU#o*dP{MV$q5~BR&cJq^vvOE#KQeUdx{R zaKDVJh2FnR%UG;AT&_z#Mko}M_kQ=Z^a&-ym^aR(I`4R0PykR>(w8I(WGet6fk}MW zRn2FY2@&7@+&V1_gc=Cs@R_4GOd@C7ae?1;$S1$I2qYJPbJ*%>iTvFY_JdCua<1Pd zW^?FfkcHK4xY<1)6j>zj_NN)puyC)A?i<{sZ9cF`dB)Bjjd)P?m{vm|c=CE9^am%I z!m+1&B9AU(?U%409C5DN4$@L65bBa_u91NF`P)2@g^+zHYeP%USGv?VY1zGaBiC$Nkb=L{%`Y1eem-Mw5T#&RUU~dpx&idUii$? zT8oYggCE}7TY6un6#=WNs9+~}@l_&+XL?qcC`l`KmQkv-O_BL&)w|HV!;{1k>rOBt z^1Bcun~oz*G{5|Z7ew6III*b+V=SD2WmNvr;bTK~+NXPYWi7!Fsb8*6uj<(OJp9c4 z?d1dbvSOJu#&Jlj{+rB4FKnEwYLI!#AfYU~{ZTGZ@5?77vKQeQnj(U%``!jm(DQp> zW0MfFt2n$uj-YR7nB=$Kx#^h3P`_x-3!x0XC4i#9L4GezNjZLWD3`6}2BOcUhb4u- z2e!mD+;v!JYiiI)VT3%ZA)36@)vS%9o%@o&+K|~*LAC(UQUWrmxE??l^#m!-$GO8= zy}Gi>(#@rT*iU3d6NmaVOblQ9Hrrp5PjfdexE_m=Jtd`qAq zM_haaDkS-Dbw!yGqzzs7XhKB7H%&(++|NKqtH$L7ZP7|pfbXirgSE>a^Y#Uiuzz={ zs1c`y06@5y87-|J52J6nn1vs{^w+&)iJ4k^qs(}0j@lJ20QvcGl`C}@ggMPbf)@mu z_sd3RDn15^+(*G;bpg}~kUf7GuM8YyYSVnzospltq_R}P^)NqlalaDY>UYNKc7lO{ zfe?0QtO(y={*|Z+mj&^ELn7WU`?#ImbhAFS%1q;q#55B_AYI|j*~LH^dh})c&iI;r zP^8O|y(`=c99UMHo&5(N*k0|&9ZmvtEiG+wn0rQiSTXNv_^Pb_J7wkhH-{}T8}%)6 zn*TqJ?&$Eb`9UZr?Gwq}zP+)YZ#o{)0Fl>DF3_R!_tlKtE!Q(5Y%r~6f{z>D1V`$E z>>7{tK1!a`3{Yl_uZkDw=<{Gth+z992Fdyy(s`2#`mJ#M<9^;$!QC6*TQTZsJflcWn-DZ;dZP3s=}BQBBfR zv$eAY1Tm$_=cT`%yNbgqNE2rJiKp1q(LZ4D2`VrbPqNuyUhQTiIa5hqaH}&+)KBxK zGB8wpBCj>-($Q4FzGb6haKDnjyiTrOruwSMqNS;?;(5-)=kZ{IaLkBry|AmAf=6{* zSx(*5&>*dA=re<;0i%~k&8KCuSo(+xj~=qxvsNyr^0HX;}1r&eynYJ;w% zSsHQbQN;fx6bwLvWcTNbgLkh%dhgM|f4d%=@Pg|8nEu>5eXksjMfz?_Qq5|LALh!x z^h#2OLCq66=10{e$jyBEiOOd)4q;x7syYpv$mzmT?ki~FHSIUn3Lh;jZR0+LH}5B( zz4~4&BB`U&L z5Zsq%S5@|Dr29Z_T<(SYhQ(zFg!9$O)w%tny zET8wQo#Nk8JfxIl&Z=6cYuYz}S{iQk*kEQZNufUfI1-lq<-=7NE5m3qvfz>y{oi0y5x*FYx_Y(GRij%T0~@-=D*wyfSS@? zpKrXU59%k^;L1aQo^DC2i})SwU5LYGZjRQLWM1*+0I)PMt5g-#;GSl-6#F zx=k+Ys(x^MzTymCWul`I$qou1=|0m$FUY6fIcv~(ePFM1=q~xXnyg&sq}sS6=qlmo zSl!u8LGxgf*+fUqv3M)ozKY44TK)B-J$3!qB{dz5Y9|f{35!Wxko%#V~Jzr9J!DV1O?ZkG_(=S^P*s?*vuW zTHB@0${s3m1b)KzdpxS?rBJ1}3JMCw#+md+I6Ug=BBY-cF$L@t2)B}i!7S<=)%WMU}7BwY6k*DjrqsU^=nJ| z0XPWh0WoVUZAchx5JGI#EeUhC8wPeEhpu#idX-G;6Gu*0 z{3JV3hdx^K*gct4^;wK>f+`!U3dm3P<6a{9y>21gv5rdNA#^@%ff2#nJEj}GuqE6E z>)IG`02QWAJ2Dim?(8fqEsJua#zh3oj+Vid$jEt7p+N2M`e8MF+UlrMW9f)rX+G|| z4iJG7Vs%8_*iGXLj`Jc0A};C#TD)yD?-;mYGxb@Io-|wnpQ5l#42(L*9t%f&4A4X1 zA;0s1IUB3ZY zAIw$b6CPmhI-NK%PK52?HhTl|g?o$i5)kvpXKig)9s4W`TQaKK#=_djh{2)~v9FCf zLauMk-xw@c{wZJiNBiXJu7?(9q9!A)A+MOUZTg{u2V`W^jk@GZs~9-0)89dca!|_Z zb%R(xKo+5ZGl7W_{Pn*S7|07MNqUMb#cxo9zm2Q5&GP;4UI5)ibS2)EwKN&i>izNO@igjD zq-cPTp34-1-r?F;X$@GBZP)3RT_rd>IOnZTybtcSZyih!f-$YLk0S*}?UT}$UQ_KF z$KF8^Rxm8W;dk`@k4AxFD1r*8)d11IlYQokcqlypbMpLjC_v$0Wbg}-YXR_Waq1u} zzvywLZ|7WHvK@{eieJWkpXF~f?QwP6*G|t$AScr^&>Lr@%gy0`8|-j$(Kwd~yWjM*W|QKO(ua!-w4cK za}2LF{k|L@LO`jy^K=cT`EH!>cal5xH8l$;{!?}w`}ysS^f12h_-1*%wdG6s;y;y> zV*9lJnh!a`pk;z0s2d(4MQ6!R(Penf-B!>Nw_0)k>txoFo{1-wLRCCHq_FI3VAQKkV*n%a}`78D-9sC*I0euPxOA zwNd-SXMN*TYu5Kb+q8Ufrdty|N3VnaXSD714l|fc-ej zKs+EgE9CpuFrZwRGo;8OB9#kyp-*(*o)u($Z_KR!erGZ=f@3HbYlZ`ML419)q^$I& zY{>+p3y5H)d!*`vFo4(9JEGvxvszjLD*>yIG(LA~+y0AwVSx6Fb)ad^b1SKauQ*-K zLw2gbmJppjtb>BfP}nzO@zKV*&B!X?0pCC(&PRgNI4 zo5}Wo+4f*oOUKV|Yi(}I@JG_@9*w#$8PR~unl#mL`+-U(12qdC9?ayO`p;-arF651 zg*Il62}Y(Vt@_92h}bxIFnv>pHen&yAN%=^CDj!x^8uYi0%M{2nvxuc{>_F<2l(6< zecmYm(AwdDX`*lS1+muuI2k;II81eP7|4S;fY5|`nUxY;QxffTM8NY6E7KL zF*A1p+KBq#iA{VgUGVMGPpuaye0+QeK2IDbow%ro?(YBKjzU^uhhV3tPFh-8oSZdq z`x1V+pFhLRWZ)tCIXa!nDJV=$PM)2gr-}uNmYMHS%+1Y_kdUCEq1o`HCrc)Sx<_}< z@GuJp2gmEz4ug+A(^FGCyu8o%CtdW4iPb_xgHDkBacVq#d~;LN)BV}9z3HMlp~TK= zm#yLJleOoYv!D!$V`8{H4iK%;@bU5K-u>Dazmp3H=&Y?h2VdrQSRUNhrIrN98Pr{- zQ^m&4PD@LRg@vU@p}6*^)4we#Nyo~HfuEnh%=|N^efBY?03f3}Iy(CLci{H&=mHZ> zO-&{yro%sVJ3l`olt&|R)swtO8_x-EYVwqj_)=HLU52p7@#V{xr6xx)?{f=FOZxwL z)Vi0osjZ_UcoaVmPrL8+>oRjQcrY+JI{HWwho`5fwL4oZ4JP>sCL6!w>gdFTmZr|W05s^iV2fI)W896_tiv@PJwk}Ri#?5|ygU`p;7=(gT zsaIzOhAAyA&A3xaeq%PCE=X}CEG&#bMQwo!aktJcE-4Z8K8Hn9K&7OlbSW_6YnqzG z{O{`H zzlB*@M^;yj_4P?(21bU5g#-i$2npTY^3+SLCo*RzCuv@MU0z-WPdvZ8%%@;yWi{vu z==kviH0Grh7w>+jS9Ec8z4z3M?M8_9L=N8E+>Ch1Aq0h9oSoGOCBk(tF8VAtJELHe zqoSklYxV5!e=s-y3oNZC3c^%o#lI_tezz=%|~sGl^J$pPyfQaWPX}6(JWyjRxW8 z-M@przCO@8s7EmfIp63(f&2tR>_s^{JIfunlxeGG3UBP}bUFV;9;5b?Wt1EHp)3-&Ws8eR2A2y{h6Dw<*->r)_3fFpbOUvHD0SYqm zc&13&s)MPisikG#x)R-sIGokhRq$|mC8hGx(pPbEbT7~#z!r%gfMuHK>9yF+SBm&v zMN*3R?9Y^pB(h6pW^e86=xA%_sxgH!w70h-I3?h2Be;hR(J?Ui`2P3dwqOmVZ*6V8 z*d7Dhl~qtc|M)MOgc~_U#2p5>1l04GhnpMfdsPmOpE3pq8~gZD3jq%=E;cr{zP>(* z!vq{orl4#8%F5%_(bCn`6^N&Xh7WV>{T&OO#F%v)cwBF)eSY#TCv%#IR#v`#oH6%` zPfQH$dw;Up5#je}7a;rY-8)Uq`i_naD?#T?M99yHi5RoYK5=K~n$l7h&W4pkMEwiXA<0g;l#e87y$BKoKvZxVX5p^9fk!(&8c; z8=Gk0)8Wxkhu7JAn2ny^pWd(dAiQW-rpapP@t`&Gcq((Q&&eN=mP7DcnQLh=DT;mCv9zQgM9a5MY&+^ zMPO?Zv5}CFUcY|rqX=fWE_MEJ>k1Lq)SOv&yH>3M=1N180}i%pUqxEFFIPGO5eW$m z@z>4S-=LtNA&c6C1VYLf5NC_#Gr$pc_+FP57dyGQ0MEAj@B!S%$IDBz0~&Po+B_=q z^Xag|@bU1#oD@}5D0^8$FC#XzQ6x1q>VPE|7J@detgNhz3=y+m!HJ29Gc%f4SW&gL zwe9V~bjqJ@c=-7G`}@I>fX@`Em8E4uV&eJ5MOksNo0vN=O)wf57!D2&!Nd9abwWbI z`T2R9$B~fRF7AJ!8%dYlPf12nGDwb&i#V<;cVlA%g!jRFE4jXQFjT7Q`}eOP>w|H$ zgYz*|VpAMGKfZrQ$HY7=T)V$MF@KYspP&D^rJUvyfChekPg`4NP#MI8lj*%gxk6a{4f*tWib0SK>KTU!+s6>UDul^q=`LqoQIYAr#m zKyXEp`~(aW051*>jy4KB34A2#%3I?D;28qINtat(pId`>F88LDm6b(BMZqFJe*Cz< zzd!ivpw4>2V?Xfm?q8NzVDu?7^2?V=d3k>e6qAsP>4+@^IAK|N*XhxYzdfYAyqZ6K z5;yzrLo>!iLxV?1I6K)=Q*#E+k&N$SY<#@Aakb=k_k+0%vB0O@$vgnCrU1wSQ}Obl zB5SK{xw*NuwNt&l!QHESPwYG68Fn@{yZir^@sP;KmNt6AD9Fh@4i|C?3;Xw-sGncc zzRwK#{rD@Sv5{}lI{&qjD+-8-B>J;6GwGuKKH&DAs%D)v-B!1f!ouz95=JZ%YMI#M z-$6ENii#Lx-{a!m-hQg7>j&T{fqSR0rq#`(^IZ&mL|smX?+tzkjQt zpoAqS6T>FXf#ZXlM1+L_Hedexr>LOt@c7tJUq4rAq!{=jKYhK`{Xo}~;+Y9Rd@^up z5D;5hTCR^*A~aDI6&1DsCcXxM}9OSehn<6D4ncVN9j==2lzxOy^ZYeKk zdll!k@e7HYyDl~s7Z&zeCNE3WfB)d%{(NgBI2bV?;0a8g&7d(7Se8ddpj}Sxw*%-_C29kMja3&65F3^N+vf?k8Qv|v$CiND12C0 zSPYGfIE-3nYAU5c!A3y={XinZVDkq{>Zb9dDMc2?@ZCU&yZ}Sb8QfKrl!6O{MExFg{{Fyd-{w8qu~n( z3a+(#_w0*5y*plMYkJ>@Zt;h+CkFO;B>`vg?wGmy;f{`axbMmayJ{rHFL zRh*5Togzd0UY#%#0Sh}j);_ictdoC%pNU{Nj#hSiEDhMXfcC(-DmRFo0LlNJdEK=` zvBSVIncEu127=~eBZ(Zf&VWY+NAJ`1x9aLslX z`Klt-tmwY?%ml;WWGyW$K*lsRHI-jbphvN&_KJgJqPI66L`Q&YX=!bhmC>_!Z*_6N zt@0r4!Va@@bVPwHcLjEJbQl5G5k)>`=i=g;oSZByEF2md`uFc2At9k$g597T@_1b< zorp-r70J6Su>FI>!^cZaI8T$ugs)z`0tp8)GIDrooe(+d0VomEgL}i5f7>`ZIyyLr zg7h#w-Ed&6g=R&Z?!{VHpqS^ep$~6Zq^@Z|kz#LeFGx#;76DA7pvbDJ{RSwfho_T7 zKtS+ututfxof}GsL`g{rNSmzPse5ptP$;k$ZP`f;aJMTd85!7Y=wgj78xGC{a244o z(!Ouat$B@&b8BmBqiQi}5kL2JTZ6-qV69x*vYgAPQ4hH}IdJaQgYj{3lg@PEJsZIx zAz)Tj`T4!M%}>$ytN%WHizE!E?n&d+#xBRs@%;IqvIBOMlkL8D!wKvUaHYE>X%K5) z04a+cMk92@N)!QtQ)F~>;*TE|wuZR>5tRSAXY#|AS&c3NLQr+}o10C5d<5CYZYt{P zFLI&8nEk(gZ2}w0a9Bk7EPe-A&-l>jsFVVKxo*woP(0%)uO;gLsAd1jf zD^0qhyG?Z|@DRDmKTS+R;k=W#Ha2SP=3i?Mfc{m;7`n(@emgBWjd!ALsoI8$@*Ci`)30B~e7I>4)5@ zyqC`!skP$bo}rbq!(kHvC#xF9T6J5yf(6VN;X>0Ej7#Oq2dO%`5^H?-){}{OJ9L;k zsC#<)6{`lC`f(7}I>F;n(%^RWY&QIn@v#T`A$2uf z3$Ch12Q1QJL1b-rPaVI4pIlT+XKf+Ajo=@z8!WA%drenAobT!8IGz ztRLBJ6K@j>g_qM~f}kxz7VSMfeShLB!+1`;iSk{mbul5P_h%T8PkBo^af7hBrgj}@ zE9}53o#i9yv?+e4MB&97pi3% zyGyct&y`5TZj;RGj3g@v*r+tQn#f(dRgo0&w{Jl6IGA|cIcW5ym`cn_+8M4ff?yzc+x<`N}xM6sXV$eYN%)!%I1 z$#8)0yj*uSfDT=6*1X$SfIu+v&J1EQR8=PSybM0<@9P|S20n6zMu=C}rJrYonP02^ z0c~ZN?hPc7zu^7ABiSqLy*&7QeC>@8AnRHSMOx9vdw*_;*{mLzq7cXu_v~<*DiGI& zF{UUYDhj7WS%(zhAf+EbO}2X@>(<+QSC%Lb7(_wun#|+st##ucx4c zC2)H9{?`|+hQJ>Y8IHCJ^GW%+k-bU1RG4SLdWT1P?D^itSWRjsCdCtA+>_%#oT?i> z+S*?PoDm5UTnSdz=MJwfZdSnsep4jc+yR|HX3@8Fzey5!-K#{U(p1UQ?zX#cB@LeM zY`O|6qB5`sOr_W=?CmkH7DHtqKMU^RH2Pzl*V+PF8l-3DrRoZnUUmANbSBZDke`UR zN*cnh)pf~;X(-`JPOp;&Hx%zQ_z3~`8jEJ zHs*3bqJim#C1dwHvz8;-)~eoVx|^F{)XV6w5KJFPX(*o&a3IB%6(?TB`R(7|LW#lK z6CRvqpUVb3xEDZ!c8BVK_6lOZnhoe9^w?jU8^7T$R4*AE#SVJAWT5KV;UdP#uBi2P zdoL}fk-Lz(B_R`02`5GBct!=becs|!UtW8+QOAD`|D{UAr!cRu`Tc6-Ew}RC2^kir z862!~O2bf_`KPQ@t^TDA(}*q8$fSWx39D@hQ!hPEQ|=7gT*f)mb7Sg@uOw;7yJ&lq z-ptMf=!98|^2Qgg5-bpLt&J11VEKrMd<&Qo=kGq#WIinpmWu3WeRX4bF;R)w7x?4D ztaS0rmyg>o6BNFo(PSkp>9(2#?%tngbQ6!Iw%%=BSY6VY(geH;5`qzVsOzVNRzudV z5-ysm(y1tt+^(H}f1aMd&S)1J@SEDoYa>?YGw0FFY)1n>Vc|htIt@pADgIh*-tGLCThcM@g%&pqOKw>uQL&^1>fAE z>D@~Im9=#{Y|1IQoei@|r3ctHvB_13)-^Q>g3LDlz#U59srRk6q+awD*|Dgp z2>a}LX{uMNwbCkwgzt;GZkw^P0Z;3&+YIOB^vAm9l9rI}ZjVrT=vTMt9l^2ltml#b z?L;K*F`-QRhzq?7%Ow}|Z?=iM&G}S%E%5_Su6^zIXb}U@VX{gM`N*E_0H3R1;Wcw< z$I2XMFE+-SiozdJvU2VRMk*xzJJ|kClrIcL8|{WS$5^jheMEfo$_l=`&BG6{=(xij z8|nFXIvSUWX~xH%cKzmb>`s!g?i}5XS4)AV6vRXgZ7uUR`gIfU0E|~by<8Iag75mR z=0`jyZDy=|$&jA9FLfopXKj-x@pPFi2qsR{MCKn+g&0< z=r;a8oXnO?12tg`jUcE*WlgB!Ni0*?UR&RuMw8E zl+9OP#A?qSZ$)=D>ByHlOD8=4tp)eB2GQfD9N+4&yw4=+=wx}{uIcfan{;5+Fg?!2 z>fK_&Y@QLVnr=UweN}oGIyl4{RmaSZql-;{x66(J2t@wfM#YGI)9a=JRb)?uxU_?y zq#e!)s3#?gx8e0Bt&8f^ytmt`o_ynpyXgew;y%@7K+ncB$V?Pm)MLg4-N{c*FV5Sq zTfHuS1zJ1aYiiG*Uz{st2_LT)Zh_HwvTWn~<-<`EbhJ3q|M@CS`u{X{pP|Zd72Wo> zejX|_Oh;5S4+^u6DNbhpcoeJ1!o*y+=HFhX$dq|mZk{-B-+uA649Cy7v*YMmT`Jab zy4D+oZ!vE&BfpYi_e01s)bl)a-u^j>P^$snuUAlm@x-J{^R0ev()GE?PRwJSpTGak zM3$pdS!|1ctO051-?e&e!deWu^O($4Z4G_OM_s3K!m#8Q{&R)GcbqLP#%{ys+nbT8 zFemXG-29pF4_%qQ=f#-3W@f!cxT_e%9aQqS`t zK(+p_cGzm7<&cFcEl*AyJH)ai?)^KCoyZ-t>PhyH@#~h@#&e0qPKDF zeLILl?bYOv^_}?mR}3TQ@Dol$QQNp0EHUSHgUaGF`CM1t(-Q;)L`etk;YM6o_MJYPDNOhn_8L(>XrArNC_e2BRH2gINs zm%}9IF-{wmftKz^+m?~8JcC_5pFr_!VzP1n{T9|dk{df5q`(Zvr6U6ZDaQV*L_oS? zZ1RqBORS$3d4N``AXa^Xt@4I|+Oh$G^m9+GUOFo<_RQCbYoZy z9$d5mBxvUY^O%**DyucBo$Uu(tgkl@%&-4kJpCo)O9X(dM}e2Gh^*~doPV|7+qC@6 z=f8Jcr6LnG{e0Auo=P+V6@1Gg$Kc3ga3PS8e)Qe3a^)zS*F*aM+>)+Yf;T}5~Ml~RAkYTd(DX;(v!N=tWv*kfYd72687?C*id^6 z#>#n>Zb0{DzPRr|#{7(eM_Y(I+ZS-E$+8P$Z!i{=yc?|4!tkunUzmuO16CX8J(M3# zjWF`FvrE#!9`W^iikko33ji@)c-Ebd*&^B>B#;1;@ z!*fcEK(CrSF z&`U%IdshrvgtZ9SlwC9u7tB+yu&5weZ$l$}x1$)Q+)|qJb45uNVf?mTdt(v^wW#}8 zOa!Y7C1tFE8+nwugsf%Y!9&Tm`ZpSxOR!hUp z#Pe^IU1iBBjkqjzMC(mPBO)7m3Ru?5w8?1pbusX2{*{K^xQ&j``avK}nAi|%3mZkv zXDw5C)5DJ{dtyX;FX%MsDm-v|6NrWHV`dIBB>wKq(S^kske*jemGk%+1846=Z>6@J}028Wo}X0sWIi;J8pvC~RUebe`}11W}Q2PWkD-l-Xj)%_Spm{zCxE|>;24nL#+oQ#@h=!()b??uH`v&mE9kAC^}WMPk) zA%8Nd5X9uX-mkWQKM#|aARgEI#9y5Z9dq}YHMX@Y1x*s1js+UGu8qP&^wq9_rn1LimR*If4t%YBatB4CDaXUztSWP zNknl-E6bfPy+~hldR@)@vBD1|N&@|thAQfq%x?zQzxKVKs=Ih;@2PJKb?y1y!g5}g5?(UFo5CLiF?(S~slJ4$qc=q%C zo#z~mf57$Ly?bY8XJ%(!GkF+=&R0&%XJc+m*y><>B11_3Bd5T&|B}B+zr#s%$XwLR z*m5CP$rZzm84gT%;P#G+x|80Y$H0mJ;FRZoTAw11ZeDM~sVtxwR4dWN=X-$)1Y7=9 z=i!DbffJ+y|8lT$RiRsdL(K3i_LR|sl#0T3@^HE|nq7s<#f6HU8Z3lg=q&o3zL;?3 z#@9XxUj)Lr*01*7eZ0-RF?0YpLC-Z;0_+vw3lHx|_vOd z4CEYV%A7GSBJUN;77a!1*^+tK+cAc=S;b=>C#s<|lbWlrK$>YJ1*1R^W1Eo>uX ztV+NZ$?n!oLsS0c;k;J*(7xAOrgfcQufcmCHTXV6SW?(eDDUX9;ewOfxM||fuO&*a zH)bxa?qFlmmO=Y1$pghIy0YI9sQ$?(og77R_8bpZL@IB&xGVTU8B6@lRZvRe) zDovMx(nyw2B6XSzMi@eAs<-rw>&oHH6vRq4E5bg)&co0U&oCKj2@~VeEKoHNZ%F1e zjY$O8Hs5IesS4IsP~kGIzZ}zu^r}YjLn_aWmF~X}&rbxaJvB!u){l2?Zpj)NZy>Qc z?Tf0oQ~12S6eMaC{(>ed2{NXNPI3!cri-Y#7G9~Zu=OW;{TATfi#&a;`V?_lKL{Ql~V zf*l_Ekg(@=T3J_=l^go0n%uzp_lyH#4#MZCWo>Mc0^C{sR5o9d@u;jll!zPK0- zPodzF_^Z>YJ3eOPzI29q<$XT;C~PVzSzOaF5JWcXF-IRXHsK-sYKKJ7Y;7GREbIrPMUKQoMEHHkxiVa5>i^U&d_`px<|S|d z8@jrZDgluIS*-(A#JcibZMcGku(w(c(JL-;OANC-5n(?`51%=8w}1oQRzgs6&n?}y zn<+k5;u58`@G~LYl8O1x?t){hs>|rLKv3pJNh@vqvR)Ov!ZN7$^_lNcRxl*v79d=% z5~_yGS@E&m9JO9~0*o2%F$czPHe!!)qAf*vr#xoSz^y;mI+o{h4AIiA4X8V3ATz<6Q;1I%MJPO#Ev^4i9-Z%({a%Xx2QL^j& zz{Z*lL1Lg@)z+C;RwDf}E8#X`DR|Aw^o14vcMXDXkv&-{kAnKI{D;TppwtHG@?_#n>OUrfx|rz={H_~N z?#M`y!qpCczF6vRtvkLbgBX+3T)9Lx@JtvHsVWv21Jc_LrRPOYgO1p13A6{AtRyrX zlJf;`p1q#3^W@&JT+XtxYRi@SGgQJ58rBNQoyAMECP6hNKmy?)n5`Fz>K;idQvnj> zxvAQ+=l5otV}_-Im|6zpqcC8JE(TpKRr9eXp#2?N!pQ=*f zqmmypCWD2{3nbcW!XkB~tolhjtG&;Mupui#|BH&vYNzG3c`_5ON`SLPly%xP zrL6%6>8N;BM-DdLlwGkU_#;b68?~fJW8i_#KpGi>3gI{XVFli-Z%Ihq&&4{|ZXoCj zB}#(NbWKx@X=i11tgwbEJ#W@QK-h1JtpqrfmpOXVC8YmZEiPv>(|Mkl zjOw5D25Tfx1rh3(4+CKD33RUdkFMXvkAfB}(B!I#!ikC#K!;78bZn=e%hE-DG-KdvwSxS}--I@a#%+i6)4_r8f z+YeI9{e_g&DDAP%GxVq+aj>9f--ab+5!^x-H7G($S4erUgN`k$@>^Q*0a?fV8}U!mXMcVzJ$EZz1o>^`~B#}8s; zMH(?O6f+r+!P7dI6-^IxvH3;56o;VM;A*)0%1j4&vv8bWt51MJx$?56b=MHgd6x(3 z`6aRo4Ns;%ffr15pY}L=ZzU`3s{0~h!wDqxvtoH(Xvo<`5lj#sZyDe|MUA67`Z`?S7id2dbM z=MW{1pn9YUW`c=;8)*fGJVV2pdzaF$@GXQg(p~fFggiY{WcG{MHJKnMQtavmLI0@D zKkwHoZ4>y9YC>1}Q|`+XDGfZ%uXkgI4>8jyj4)q|DdRL0%C?(QbBqfPxNC`NiBH-K z?H90@4!-gR&-6Y@bcNoNWt>ph&L8+|CNt465q&%E`Yt^)k7Fpscu9dBOKn)w z;TN0Sy@|ZY$|S6$9Qp|J``-)78als(c#IPbi<_iWDn5iM9+7^TW)^i*c?Yk6M3IOvHdAt`hYt{6{cnT24D`c=O<^pfcd(ByWdKNA^{WKG%B zwX*YEl%S8UH$2Q_%g7oe-9Xq~@tFNf@g5Q4do0RedCNs)xBIuy*Mp6ymAbfqd3r{j zZEV=fmL&H*vgA-5;knP`G5x$J_9 z)@Q`+QM4Uwhi6fWN3&LacTe{c^Lp);aY!qqo(uC?hbY-CmxTQ{ml-34v5? z+uuC!aN-qt%+XTPm7noAj9A<&!=)V<>M(f7%c&hR>&c0`Z69#FABnt{pR9JtXj!s( z>bhlOrs;n%OQ{RN~eP#m&#~7dIhdVf)qn(f%#RDhx7Z@cL)&5@&YIb zx9hd_PSY|X)dyVKzLg=*=cmEt=H%LAk0rBxNE1myr{B{j(;}+Y*LNNRuMe2FpDviG zA-cVP&&B4%5?4a>BGExvFNEJ+I$a5eB&XM@V~jfDVc`IS@x1Ky7Mc_T(R}Fd&kJ`O zKAzxagm%`+8RqGUyDJuH+MJkiG^7jW2^F!~oxTV4gRvD6F;vwEjM3JQRyJW5MdlD+ z@JjDR-=;Dey9$`^%pZ0_w%Cq^Md8N@1~NjcK5xG4w;~oMeabw|2o`;Ed1*RLD(ZgLz>s*3S9KQTI&r6U}RQSYXPN?0vP-^Dv9>lwB+ z3Q!QS(|4UPpy9+=#msp3M3))KL4M?puD@ zvXUP45^trXs`u&sqKp-{oV0iBo}RW|<=!*KkGduaOZ}p1|I&b>-AFiE*1TM|ZE#9^ zkgTo|?rtG;_|H>BcFynczDaI%;>H6uo^I$d})BM4|>z z5Oat3!|mwf+zAhTJ)Q4>zHw|fi9ZK&zgJ9eG< zFsIUSNTI2zi%o3)F%9+FbrtxDg#*mc_AIp}fxM4#lhxp0GnNr?j;O_!U>rWW`{q#3X@7L{JG}Jm@dO77*H!trJzsea1LlfVxs5Rlv?8n!*@HZN-Ays zCq1T9#Fd5F+Maf~*C64;uxzI>&MshOt$*}_c~aL4gX`?$6MWf3@a> z!NXiGo1GJqY;;m6sFtc*N4mHB7MlEL)g>)II=$Rk4czTeEj8a=o%KF_Zv%Ush`YK9 z+QUDMr0~d01uBMe{CW4D)z`jm9*XiWd(*tj&00J)y}&)T@36|LFWrtqhQCd3vS+1i zD9F)_{YJ!7aJt~84Yz=2mC>RwslPnv;T<(rq(r1{gQKZ5v^!ZohSeNRT%1D8)n)Ou z?fjq!AuRbKL0Z3=4FjpG%&vGifaW*w6AR^XC&qqxM3a5-IWjLC4Jnj*>M&5+{BVFG znV%Q2v?#VxUCo~Sb0xrv5(OK=FV8gTtdr*GE~O;jy&HglT}xw zFETAY^c2f7s8+Pb2i2Z*L-|xqqt%4vNIoV%ZLwOq*6PLS(yGS^K5Yx!~OVM@&$Ss*AZp z++})3T)pFGixz61d_?QbhNbA)W)kK6= z)aopWW$GN?*AUGhlQYaz1B|zKg+w6xU|AvuU6}dGebI7_xDi!nB%YyqvRQ) zTXuKDc$a2g+D~jPhKAc(4IK%9rDn{>u1WZ)ZZnChlureLD2qGSjQs&7VDs~1iLl9F zlgl44j@HmcrL_Fd`5|1)Wcyd|irVPXAB45@IZ;4Bkic_!KySCz%*{z$v?{6{Ey z(ZX90WD{OhHaQZ}lf(J(18%v*#jZz?w;45(g7p?3>f6e2IOei72qy-Oa1tKsJ2zsr zw&(I1YPTX2Pg&ix*z7AItj{RFfqW4-8*y6t>{fg{{>xxPV>9P7&Bm$9)d_Y~(ZJrp5B3S!Yb)xF?n9(WSEqO=-uALD z&!&|v)@4h%&G$+!EUt$qwCk~ zUDFbLt>iZ^*C9r>#A&{>d#F?E84(&DVZ1BxQ)O)@Lmkd)H0S!$<7LAGCJKCWRmJ}@MRi7h%)&zS5%Yi|Uk>m>+)BxA@;w;u>{wGDobxvAv) z&^@@SNH5|S;{2ulyEgla=K2CXEXudPRLqk5{zu=so0C#jG}FvJU)}vW*0h~sZ_%_E z@fu05aI8tvg-zyvYJnzn@i#c6I#W}aC8OGz+0$G;WsCapR>TuzVA&Ga=hN*n2#X3+{;IPrVeAN@Uf z+;vxJ;MwZ?)i~)(rwN3c*9#Npw%eN&iV?ZhX2JzjH>D;#ClVmBlO8EtrJn-x2=CB}v8`X#M45c&=w)Knc zGO=U=d<=iAK&_qc!=HJ(;QU-|?Q%A~k9eX5(yz&G9t`3m2}vcwJivAO#Q4%*khLbJ$lc$_m5r(4J93bO#hobH@?D zyQ9Qr>GF{BU4bx~-i_nqgjiP5+uuo#TZ&uM9^8VptX$t3S78XEozA_P-balne`MEi zgadl5m*}LAAW2%Dh5rDx2T&=6)3`qB{@pgO+1&XE1cGS>2@j@B~x;#U8A zPYgC_hImA7MeP<9yR|tmKD%1-5<$u;4mKad#n9Q#8K}Ub(J8zGR7i*GNo7O#lstWz zcykk?V4eeYxGZH&*p%Tm?-#TOQNj4QYR1>|>YCH58L)qIEjVehjfHn_!@=-nG}(LT zo0D%iQzjMPrjM#tPyLmh^Jt>L4sXP`Fz?)XUVS%pQ>x|rH`>}g_+VA)@K(G4O^aV~ zf`YOj+!|q=U^iQrr-7OdFR*hw;&{7;4gvwrZxzy{xOtG2hf8J}m)dfVd;cL&D!?ZB zk(KvjhS*uHZHLn4#}CenI|J@p*Xs&lu-&+on76bPwd6WH9&?Y|Yn2(ED&HJqm6s(K zWc61#Vzha6)0mHsxQ8pVVZn+jRB8IOf8AI3?u=ibm)aqljkoYA*OHjv$IwBtmFUx> z^Xbi5Duca0lS`LrF@^$KIw`B(f2t0q&Yc3aD%ZSCgrPq4m|7} zBp)HVIoXY-Vg3K~HtNGP38QD7V*1BlaBi$HS*2B*wr}FblWq7Cey@1Hb02thm-0l? zA^tKumCR#3&5U+Fb6}Oi1^O^}+ytt-IFM}Ii2 z`Sh1B7O~8~Y}v>8a)M@kWwhhm$eH8+=K{cw!9sQBO!&Wn+-9`1jL$Yy*pT2wLP1a* zkIH5ik1x{t=_b>FeEes?R#hTgECwwFMcAHbDa&np>?}NqpZw>$JF!&VNlx@m&C0eKtk^OhG z&>=qirE}ufmSeNtS>$dIC#5ux)$}hce*tYICko=bq_R9}echL%$xjoViX2tRUzvcN zD4g$lN!3)8H=F(Pkt{k>8cnAa`4N-n;PvJdVc~#UI~%_KI2i)z;M?nb8fgoOy}TyT z2)=eP?F&AzyIz^<)j&l#Jgvy<{EjXZ(JtqLX&Lkk7l)*@Yj*5~l;qp_2RN+w+&I6J zH2&n~J@HT-YX}@Xz$&0e4$x7qxI7#bqsghc!8$q7(nt62B7;Pk6vlIzuMWr%2>7}l zHaKj;qD>3_Ct4$QZe#S+bRIXX`WsbrDcIjNShZTplodcw#s@89(QD(vu>Mo9SAw{$ zS|Bl)7HBgP;PeVec+sb^vJ&5YKnhG|H%Hg^UT|6Z5msb=`eD=Ektr@;zC!gc-{l;e zgLghxfE`d@^&1 z{T;iWKY$qt~Tr7E{c3(eP`-P;K&$_gJb z&xEtbArSid^ksWz?@t$jbxlY=YptXk&slfkb=qD%&y@#SLanplO3I)gHCvwd3>=pj zoPxWzr8Voe-CTR#wjcXHgrrD)OWttV8zs`;MUDOZUJJf-+2d)w*rgCuH}1-a;LYQM zxWC^E)2YYRWa-cW-ZyA27iK)+?4eJm3m72S;uZBQcb%J9N){;9WWRepX=V_(bH*Dy z+7cPj=;WFIujw}!&7e@%jE9WH;lC`6587?7D3Ed4*sHELdaL`zz%REZT%N!W4M6a_ z<%*eI<5+TQJq?ZLdZsk|d8Vbr@KKT$u6lD1mKNK;TmOX5CnY_N?N6eXs?b$1L#4i2 z`kU4xYhL$S%SE4OcXgvJ%+wb5{=)pX@+Uz8VCEQ*JLS>yqGx=2K4Z{nhSWdZK?z zXYrcu&MPZ%DiPN;aZFWl<%Z$TjaOBIQfZ$ep`73+@f3d}jiT0pC%8uv(oRDO5=34; zvRYnp@fnOryW!0^`EEM3Tb*XL3HMV(C$~Oaydj$SfNHH8(XVI2gW76K(=*w#c2&kw zPZZ4S^%&Z_gMQWk;%!Rtn9-UIm0PR+pv8xbhSzP88*mwdAco(W znvx6@X4T$Bta4xp8?9R3K#dWKSpE? zztzEb+}|J+X4~%elm$gv`#*#&t!QF}#essy^IE#K(xfc&`6#fs_!FIgc~iH^92tI!7Tz<8 zsFKk8Emh$UiqIO>Mv1*);$p1c3@B(4=Q^Q%aUnxZOABF5Pm0Nvt@}SOL2Ok(<@sL2 zxL-l#SM1{*=15KA9${2!%w{jqY2nrFPfLc?zcIuF$!BAXEKW}Pwfvu~gv^`b+~(?; zAClIuphMtQ&8{vRUdi)yR`dAW>h~&^^7Bb?+w--Sr5G!YtDf*Sv{eZ|;x+pSyc7=~ z`0tACy-RD)b>^n_qS)r;RXTepl6AQ|YMLzQ2l1A3$L+rw9;E+<*_cQNh{TMXoVMy+ zp->r==UP6Y&SDeUq*?DjX%aGU(j$U1|JpVoa|#iOCK7bamNto*`fmUL*|B#}a$1Wl zNF4t5m+n*4lYVxkYmYA!g#UDMZj|kvsKLd&(|4y(9U0_fS26P-W`oBpG#AHyt8X`d z620BJ43ucNqT(zW$`80plRkZW;a?H$<%~*O^={MY&E1YN*kvvS? zchW|_I~E8+B_{0liUD#LRMsm&i7r!w^(;6Qip-{ghK#%FD`;7X=Dz0i#36^1oX~K% z5^oFIF_Vd~;SAnf9OJ#q(Gqtj9AC+o)uZm1j)uv}<_amLz`M2R#u)57g;Ve{%WFki zg)>^_`wh%qWohjhw<2IVVd9Zw7Dsl{{6p=RXT@%5%iCJ(EH0&ee9&}S11W=#l0e#! z5ux^%#6(?UwixrPR4*!YKDKAeN}v*gA5Uj1VNcf;hu0Dh_zCtOeP_Ktn}lR0>{DEr zvCF3|q)y@#N`4-No!S5g;sW>1!sC7?5XO(cCuS6m6|7K6J;hvaY`O)FyBqg!rmevy zJ$G82=Cav+r{Km$lN4_fp&|U6;ui^{dEw9JD7BO245W^s!aug+Qy%(D3oV(w0t*|>=X<>{Yu}_5`Cck@-(D*v_Sz8uKQV(dbzk&Sb(VX~v`a-riT<;==4rXKM zk+dLaxiDx04Nn5~HH1*&i?^ux%e#0-yfjS#l|?EPG$=?x6SMv-S*LcJmf*oS*u(}- zH@^2+HY7%F?~qM>zy3&7{izd%mzB|}zcL&sSFHG7R0C54$Fyv8$<_tgpBjrJzgPuF z60Cn+beJw$79}y**dEAf<0-i*ODZqQp=>F8uX55umVXWl@%89uz1G{;a% zb%)98ZwS!zV3`tLv}65cXdiaP$$3$y>6ob!OZ76SII|> ze}ngnPWfAx*%2wt2NypPB{<#VoCi2lNBM<~uA{PdwcO{m`KqwY_UB87eFr6>iMVw* zEPm{XA(EeEwDsX6{5sa;Z~<}NfwdK9Eg8+$I2F~Ov2m-4iN8;3`jX)T-9LV~yck+1 zTy7#J3*r;;@wt9sO6)H#DFVrb_AqPGyhwwHt;6BXU~N9P&rVm0aNc6qsiu6y5#=^zm;Zs-5>)gK)WNy$ zgP?grX&@p};8&(`js`uD3DLjHHbW+ISmFjYT=a==UnXb3m=x5M-rrCq_wGC~HMH+3 z%uwR=H_LQu`#eE8O7$oF(HI3^mypdafd0hwA?q(_@0qUEUR$e!N!d>rrOfZ&pdihGg_>N^Ob zVKBH468SO19H0sfnHEw(L#phN$_)}tJsFr}m zYt(fvjb;}qSe(_b9a!}@adUI1Rv5fIZ;wwa^z(JT*%b!RSBmARN?=09`^!Eii8Z{O z-A|hF>7=fDULpB^yRFA5uZND6;#tm|+7}@={?Q;J?;GRXJJ1s$oj=Tpw9lU%GdGe^ zrT020SFI9FaPn8bGFr36?^||Yc?LRZN=Gr}*YqGSd`_!-#b`b1u!ydoRdI7C8x{Y+ z(SY*IH0ul*c4&=6=t~2A5x%_^Au^kk^G6g20*d$f-8KB_hjcvZGw*z(>8Z3%e|Uk}N#7q@n%dH-zWN5xhKJ zWCKN`AzUWv>NvQQ6O|uWx*aAliHI_cBc4fo15-bt51hh*ie;$#<^QqI+W*Hj-*Wk1 z2bCvlaNt86v-WqPeGe?n&(MHzLiFz4&zKnB-j_y~B|y_bLqHG{7w_CW2iH`;xg3gF{r>Hn zUwiv2sFZ#+oOlCq_3*&K#@23f6rc5T6aeG)W&^Aa^0+~TeCc>6;&y&PL4&RUL{Qtk zetAEFi)!`;1ohhE0X@N>KZ;JfMOC^Cx?!(eyOooX@qDG#qY5<#Jclc0b;u7Ip4IYS zOnUmL;mg9^vyAR^f!zK5J%D#4IuWNK6@Y8tgS#1-nH?P*xLnWvlo*)NgFn{S*Q33C zdpwmNU1G4$4JP-AcQk{K&tkTur$>k&ElP1|9^iU9bvyFusK85KqyX%LR5Ga zDje~@7YhYt&EUjjZB17VSndEy0H7dgzkcNaEcSm|{)~rn%jFDI+k^W2nPQb;&KTvd zb{j%0EVZb=P+z0DuMH zju72h=8@b(aALKKitF)n#IIlF^tDp08YIhOKJHK)5ssTfpvTQ4~ zVsT2v%3k*u+w;{XKp>!@S53YxgvU|H&}+A_laUE)X=#CrKH%WsFylRM4Za6+E%)C! zJkFhG8(AuP zc<@nofriMUYinyWH#bjDPp?8gsL%TI=ZisK#Pj2A^}Hn*b?pBx1*;4Uyt1OA!G0Sl zahQ&ZiUVL!z>2qHPc0FA^rF>i1k=O_@U}1yR!M*y?3u&`jYSO@Sd zgPb+1LqL8&wLT%YD_8)WC_sKnDHs^g!h4a>V4=QgX{D8ymzR~D01ytKG#KJ7pLS19 z+V72L0v!|UL`(n&G{bCMN=kUAZVz6gCVhA>r~Ot)em+HTcdVRgdkPS(R`2JBWEJL998n49C_<3HV!{(ihZ++ACP*tjJl0wF&f1hxBn%n{w|fGq=9 zFQbNEjW81}RU7TMmz!M-3=E72#NZ(Zs5#e$#>Qc_Yqsow;RbjGEG#S^V9A(7q6w|c z%>g@v2D}mEe{aObrgDWI-upG_FTm3{^ZIx0fX+cJt*s2&E&pVrKIsFcQ}d2DLq}bm zn!888GAt|%kYfOP=4+&6f~%Vw;Q2h?uKHA=Zppxd$Hrq~VPgwA^j^p{u3Ps2L}-5Ao8>SyZO2xHgr3v z*#Ub5U~MrO{~e#1S*|t#RGzGo&4=m^Rs$56NrZtcLuS11KA127^r_ zba)#H2Fft52_!^Fb_jy)LtR{3n=nwo?d7R4EiJ9YAeIM+wXw0W*Ta?D!xhy=8|~4C zE&KfZ{MX2nXz2gm9K0GVJpAq6gy5{-6UM;sFa-rgwroKVGSwRhAmUXa9H5Cn%vizR zSoL!H;DLyM5Oe+d%7B1~*tu>SiAP6GMK#FT#E1M_#hTH<8R))%_Ne#8`9qumI!vx- zYaJc@fC|)uD^ydQlM^tuE9gS_N!CSO>elb13U$3aTW}AxN@)WC+rX02Z|dGW2VV*d z$p~j50~S*kK`7bP)issNrEGl)+cTF8#NiNxhNRND?*Woae-heB6cC-!L#~ootrmc0 z4V?7v)ctc30yZWnGaTd5RJXN`H(M68*dWOA--Tixm4<^q0TKrS`De*GO(6H5p>R9^ zo(|AbwCD&iR%GZfcZ38`W;%eX2G*i>yEok-{|hky9a@J~P0>goA&_#wve5m+S89qY z$JZZ{Rn~D?chgtAJK6W=Q8~h6*K2c>`9#XJZlUFr8|%b?Xz(*@<-B2oj0|(8CJB%8 z7&G1w+}hAy8&J#gr;MC#_}&0=8lwS-`DdOykvCW>4+IJ_K*=QHJXZ(-q?y)Hn#hQ@ z#dvA{v`l`U1-Hkp8i4}MRt4zI(yv#1fG25W&zs>gY-17f`i47p>sI7vcXwMONuygL%8nq_RuUlOErfG9_2eqo3t$I5pjp0PTx)$*01zQlO|L8XAJ{iCwg$ctO{&ul(i zHI4>`rJNEg(2*?({eEZrddkBDEu(fbqBOkNaZD^$<%sd0pet^J4?(CvO53*UrOBEd z$5E5|yFl_;Z6#$-`{S$BU+hM7&s75Ajq>y8GB`m5C;j`hQ9rR_V$v?=`O6qjb&&SIx_{GU40z!qcZ9jt zy5yoJhU7g1OiFuFN`{8QcHiWrIZ}0yB)cOOCI8GG`5uYZ>~MbkTpTxhw}6UEH|t?^E1_(4 z-A9vY!Zs3L!d0t;1<0<_Mj}d}clk z2uvfD-G6hn<8U<-=|H8!_Zf{O7nb8iW5);CCn|y>W}rKdfr!_D%>It-YQ1sfvSCHr6NwY@U0AYHpV9c|a|MjQ}dp;&uVku;Vmz+=-IA7qqQxj9MWlcHOKMT1e2RKk?sTPgz2PTor~Ul^bN$Pj$jbs_ZFc*1!K`uiqoyAbn95p_ z$z^uk@N5G*pcQ~~J|)Fl$e%JBayMN4pR&K=+8$q2nBkBicj)ha#XWfq^>r&h2ZQ`x zp~-+5kM|_2+?+lGMoXzO(KeOl7I~JOSvGp`kn#G8l$w){(L!i-ycO^-5NuOCwFbI> zmV8Tb0xG86wX@lIMfec(^DF7`%EX4>r=y5FQ;2WdwoEgh7c$obrVJC+;IRAz zqhnfgna1j;E(OWJg&}(gzqohZT$8^#c>?IkD8oSH<#otiT<3lhRV~krk<DF;oTtJJsk{vU7vc3cgX}F(ET2OLu`DMWoOVIK{`Q)uHC?*^@Ovt z)_2M7YCA%sP3|I62AZSMUN#qoz*Ig{!|gS8_o`)nHmK00$$6n~1{E;&twdiik&G5v zb?mQ#vyPYxxO|vweUzKC4HmvHchDZp`1cf?1+}7$9_#RwNXkz)2WgqR_kjwF5=H!U z$|n^q?Xb=b&~Wxg6({5mCCzvCHfFx&x~3|pZ`1|mQOVWLbFJkoqNf8i#X3usj`zgf zJ!3W+Y##-VnsHpBPIYHyT}jI2(FIm(DECEm%D z-+K~5{tz?WuMBG4N}pif4LoM&sNc(I*Z&Ycza-jF+CudJUgsvW;!$^%WncD}dlH>!CZq~YEy4fzhxisxplGR^H zXYt+o1RDE+_|mG?(PahpMq@)c1uoutjWAWIn|p&g0z^Tne3%3`s*62UC13bHeU6aI z9b0lPdb>It6`x~PiC2W`eN(vKdU@WPE7;#()Kf&v%b z_2&&l72o?j^Dvg-#Otkxrh1HEmMqw69UZT;h8#15@^=kHwhPae>{y2$MLrOF2Wt@J z6Zyn3b!kov%C^z@=ORe_y(9eW2aF>bnX#$Z$kzmch3F*K8ed;u08y>8Bg8~<@{Fi- zyfxWYsgeoY?c1J{4aKc5lXynid(Yrav?6S$E;I9oA#m<9@=YV&9yR)@CtcGW)$6bP z!MUXa@P}L$d^$Kg5g8?Da>T(?1kpOibR`#sGNB#OvI>Q~wU`76?DE5O8Gk8UioP%# z6zhpKWhO3Szvn?122PP*P5KY&(U|u-;l&&zf3cJb8Y0o;gOjNO@|9FAQz*y?73?}bFeDvzAyjSKJ6y#wZ3 zr{R;n^x%??t_#?rSAj0Ke5QyZX zIV#sZNb`n@RD25y;SQm5<6RAt=z%~U@G$9`VsW2JU9D}zC6N>h@AA^cDepuke}J)B z<6%~cIN|Y9H-`=5=uQ+Uqa}O>o>>3qjHz zq(eF!baX7$mE`R;$FUlO?kQM56KA*M`MeGypCvLMAOC+Y03K_!@~TIHF!+|9(Wqe1 zNA`8t{vjBR3>7o)+P%<)b8WvfimN< zq$i3ly!|53#j?Rk46~Tt{ue=t!&3aMN=aoyvS45K$CZWu&B~Y>y4YbR`WGyxYi}C| z8oaSL^~ni4@!#VIi9i=OPrp4aRnKpcg;ko}AJmyu!+_WDVUx>cI;*Yy3&e7N!1(jp zrNhtme9vc9?bOvLneCjOULW`6>4V+6D`%mI_<{Z0lB$J_Ne7vQLocO5*Y9ou*{^sb zG-%9n1^Vad&Ecb( z!DQb`)UYZ|?wFdA%I8a>{zNE9lZC=1lY+37n2&^uYIBc zNz6Ni5ogqUQX9MVqv_Qdnm2LQHvO>vBF7(c+q=|gvTLNpQS-C;pAuB)JXNk`*m4Ou znGF#y5FCV&SvZ)sGiE=dykj*@ZluOyV68gdqeMR)tr?&-0Qw`IlAWM$%#4vzah%zK zgFBDIe-W*K>ln4TZfE-8gB*i@ECpV(-^ua=Do3l{?1rG9)*}kyQadjl>xHc;=mxhF z>*FBbHn!q+ayK+ccCQA3aQiXOdU(7tf&$Vk65(|_j>rX5;yty0p-EvE_bvZi82-B7 zhzh}H_OJO^-#Sl?% zHvGXZ;$w5>7QE8*54@=U_T$g%taP06>ZXJ5Yry&uc(X3)`J?FAq1cR5#9! z66WkHE$&N>g`zMFCgp$ZkuVV14}ZN0nV@dVheKY?Pu7;EMYl{Nv~E+RD8Kxg=~4e* zZ$ta*=S4ZnU-(Me4UL)+D&I^tNV-@xJ^g;;OH|fp8{~eQKQ(W77I$y&mJ?Tp%|PSfaQlovl8KVu(X z*iOYaIROZpZPSXsz&T)q`)NMe01RFvM(LM80c8jAnc@JkpBB@hNlF?cigOqiLMwt) zMdp#IwMFZSR{O_NYhNfy$W)W^VfmNMbYyWODt<+xJEt*QIf5z#WAnYwE}yd^!6#zD zGLlGc(kJq9xShO3W8g_Vm5O@tt=Y<_0FC$bNs5QUkgMc1mMts~DO=zJo~-`68?M9w z$p1`5ndqzehd`B{mFs5oE-=qpHwbh0-Md>xOo*=GvgFaGS}0KFz!11#Q=iEUpDnB3;L zg<%x8Aba^y63L-upc$%XqNH((tf+_#~(Mbv?TqSwq@}A8$MFJegVsg6cAcR z9rSmWPrd8)(b;4=m4#wfYH?@VaFhGz*rsS}%WA*ZP<3%+BDD=Hs8fW7r1p=7p}ysK zJ?(NqgW8T)+~5mT`h__`1J-0^`}m{Lm)WLxHC)T^&w_bF?X5m!40LkB zi@Nvc9%5S5IbnGTm9SA~2CWG}-x8Y++?5ZQVaeWWh$8t@u~tRuRx}uSv#l<*;$PmF z8JShqPKC6+N=-2{i@I-{qJYbczPF0-(Uj*H>mP~{v$W|n(zV9$CBS|QHN`yG=a%ew z%US+|=g##iLDcMI`FH6hX+YB@*B2LCMi*NQLT^`07|5Ri8ju+3eu`cf&Jz#$e|&vq zR8~*)?h8@^64H&*-Q6ux(hbtx-6bs{2uOE#Nq2*EgLFtpci-`M*MHqF_g#=h-}LZ+tDiOotCrlGVn^kTe@^eovM-<_+`0M3@_(1QL@Hd>f5uFd!vvW zGTK3`dP-AU)0i?sYINjcZdCR??8Pl#n!2nFThm`z1RPA|3-8@RO1m_v2Z)iShzdrZ&EEJDKRG?9r}K{ZiVU5Ctpj|qTIdly8qTs zhPn*TvcSATa*Wo<22mR6Udi35nFlV)Ged*(=wn(4zkxqX&mN`4jON<>AM^&#R{BN&uj*)?baG9sC zufGo~sL#jeqKKQzslS7YcjtaZUQESRRmFAo_}hK_U*GT3UYP1NhZd6FB62vYO}Ywf zAKaY>31xZ%+~t`#2E;O-x*Z?+zd|4oSmM5Cyn~VHux)I9>w|Jl5-9szN0OdhzeFFgmADBT z7^0gW8GVPxY0TywZgtwT$`WO8nl#ZyJxRUl#qC(O5zKo7Wfly3$-^0QW)w-GA&v)0 zDIXY1U?IP6m2PQ^Wf#IUhzc<0<@YOS-+i_?dtYq5dIj@_cjKI#4X)|x0P3H;41q0-U9D7#npNGI`cI2JnaAwpVgd!L1?~$$~SlMtN zA|ljKON26NI}#pI!jls^sQXo8E>XG*@aJCbPkV7%h%T9TRwT+!vH(?0M(B~=c45(< zBZyzBTer+;T%!;F+Ctq?dGmUV`1x#7P7@v)0s+m-E!N&&u*G@k$g_ov#JTNb4XkY= zpmOYeae4Kxf8K@FIqkxrU1Qaahhg#$`?~M9-6`EAnQY!;CD4!`rEwAi3l@qj<}>lP zZzucL7d8dP*{pcHUqeNvBMs4U-7B<(|EU50ovy&9#%ooMM+!UnUlvu|KLz90(>Nh)VM}~`CK1){af#Vrq4y3a7jFwekQFnesufgr2sib;sm#%!5~ZCP%%mv zQimrF`z`4sz~~}zrp#nn>_)lPdsKc^*VOu_x|EF9o8nHc z7dqK2Z<0T{X;%$d{H2Eoi%6cYF7^~!^FM;X<=`K;Zvt02vRH}`KN^mW0=u2qM?KRg&*psEF;-MPi-vl3R)yoo`Z#oq1eeKP z-}fGtorCg6%;&e)6BRe+Vx2jCWiwbi_9$0Ek*$q6@l}H#MHT9bW_?9?@WKpCgV?oclXa!bl`b(P#Dq5M7GAP zOg8N4X==G!6y7AP(ACMc;5i?GJ_=9})F;#h6x_ByBGxV*Lz4-5TrU@QxNq4%Kekr* zgc?(LUuX+HAFQe_+xm)f0&N#K{b6q-~!7x&L_}LnW*IyJ+8-UA^vfXWf7aA#Gz3$NEOsH zn7%r7f+TW^fRWGGgvnaOmPDhTLv&@|@Pyowz;dD7Y^h=J@lt#;7A;2PzvMxE)wkke zf-BZWkTnwRG#s47bG)20rVASX>vIE8f}EE+?aF$^=n6F*Xp_ie`rT_T^&J>810qgt znH_$fCp?)R5C|4g4{?wHm|&Q@l|Yjtd+*C<4@F}9s4l=}i4#-g!s2837f?hHPK{&tY3y`zR4}82D!{C6~ECpYHEt zRhBO4PXDYfF@Q$nR%@w|YR%G1TpSzhVR%wv?+y)E-H*l*OYjXz1~w6ZLiZZ8w9wN; zP!A^=J2PS1#07t)2}{?R=e^&}2cIBL zT-1hiv)B3E6#Pi{=G=J0F9#Uq8{5mj2VV4fR%WzaUxQ^~LZQdiRn~03cMdx(c;&Gz zV#F-YiUs+ks~EB;Z(=d|q}&1p(LpJlEsXTU(@9G$E-DD79}o9(Q0X!;zrUkZEi?h>`W$fz?*%nm@OG?bn=<>>u!_Z zIvqP0Tru@0h9|P5-;h|9JH811H9W~PvmG(0)m!2Aav#!IhN_swGMUVN7e7bTSU1gg zf0c_9Q0P2rqwT<3OZ?;}>-tYJ6-XudTeP)RS)5958Ny2{CWRus15s?2SjQ%RcO{Q+ zNeH%#?9{Aa+a?lLE${;q=?0(Y-R@}oe8bp)k9+=fUy7^PuZf&(9OEO5Zp8*J+B?faSO=PSKq)iKMM zMyab1NDkp_@0{X~3B3Pn0t4B^WeBR_Oglg{d-w14$q_FNNStl{M&|$am(^EKzk%kX zoW_7y-e7vAgot9WvR9EUK|yHi>F+1{t&WMmBbkV%H}`!Hy)k$Rh22gAi_|9sCjQ>8 zhg+9hc8-!i=zgA^y*ZHQ%ds#&t~R#H)y)YxLcnf=)40U<_hv9HWn2no{@mRPg|Qp{ z69EPqq&C67Y7CHCj~F!twFn{&84Pb4kJwuygkq6ME>8L}k8rb@n#13b%XG}=%4bhN{Kf|dDUveVaYW5 zkYhhO-;_^U8hwdW1`m59z$WaLHqs8lg;gcAl8bQjliQ$;1o4oUVAFv)E@aE^hl;_} zm}ngB8cPZne;-<{zQF=h5UtptKvd7GV^hs}!!jxJCY7rl69`8cNm0+vYf7ER=Xbe| zVa0*rtUTFSroi+26K*0!@E3NJx*SQNv}orvn1O>(&s__)X2YKe!dBTQ6hVjg`PW{7 zyfj0xwhz;tr;5nB%0UsR}k_r**W}97~=n6VQXZnx#Vw6K#@#oYP|2*TC zj$KD8hCH|Z@;vZ_bZK?5E7_ylmd4MyjcDrM9E%F6?sk)IAPRzkp z)Nwh{R4;6=FDJS`tg3f$Ml~zdb!{x&>~4c#5h6=0dIihD8IM0aJ8<+vzM+4Jy||;x zaB@7xAlD!BIp$fD$`xx?=RpF|&yE4=pjZ3voZy#j}5 zY$%b*IQ_7Y32AQp*9}6s*;$H|aTe^nd3t3aTv^{NFZ=jq%9IDXv%AeBB#Jhw;w#h1 zt(<^F!Bm@D&h6&(A^r4v6>j;MdwFoP;7yhBzeda3H2e$O?`*%aHH~J<+t2UCf>|oA z(!;}{L+smBE{C&4vGKTg!iYXAP;6E6xJ+#pFh&MThJHfOcyhA+{y|;RZaYEoKudK5 z6xCYL@MLXK0L_)XRk(n~a$9Cr<^9hi-XfWQ#mrxmNyeUTWi{2J#Hr^`^ABLr zW0c;l>6X9WWL8%T-jA<&m?GFDVXsezT6wYgk%W$m%e*{^@Wv3!^W<9A6M*walE_|-^bzMkyu#<%CZRFD!8@!PBXQPO8CDbi>y+Chh>_xg#YpbVX% z`|>jidQ6)NDR=6KS=<@MD-xfELv2-CPV%K^@Mv%{NKR-!~{7om` z;8f*9u9)CQY8eJQ3pNaUV>G@RgA-Xj&0MiW68Z`AZy1%q&a-c=MIqWbGkOf3HEhhq z;xpum3Wx{AZnQd}eiurC{ODsjm-R-%_OV_|UUjqe^Mk&N^M@SWDaL-1<+G-$4aH=f zlZkAZc^em0UNTp<{&Cf{ZM$r-SY<$zi`*QN!+0HfwHXTqL3$o_s(xpiIvYLx z5NLmF*I+61k$QSB7L7_vukG)&(~i9C=6SZj(;)(=tF}JYS%WOFh57bF45QcE6!np`9RzL6_a%bDg^hhEEv!2 zZw0)$(%e9_<7bNrDzo9;r;9!Qs#ig`7djn^f@Rl+`{=KEydj-bW>GI&KrFORB(ku) z9*vJGg9c&#ZkULaDts^FSNihvOUs1Yud^dpO=p2mZog#rd)SfTwupFVs;Yz6KI!Xi z@9o6gyA-QN?52DSR_S(dWaH1V`JmeMs$R*Uv07t6V_8G>0Gs*8u>0k5@wBDo2vP!T zae0u_Ny1KPCH1q}R!JYp%k}}zk-2UAy+h#DH0 zNbuxYGM~adZ}}}wr2B3`(HSAkk3+-nlhYTfi~EDqj{!N-B|o#*1s1n6tV3D4+@{;| zkBC$$g!FoSo^uBJyhWCwsEMr|y9wUSzBdWd=*!38w{EG@?Sugf@hc&yg|#yM`AoDu zJ9)KOSAUhi{-hKmnLfIwsl&JR_5{FJC)<41CnhWHo=4}p+;2v+Nd&FS7?(Zs#n&8# z_Wx#|yxeS%{DBVXg@#m+ygY0(rBX1&_!_l}g|z;>bCXioimKI$Y9>FFmzwkpMxLC{ z-$QsGeBQA(ejkF$G$Ma;8MA>N`FztRna}QwQtNghLbvSfQX&W!(^F?<8a-eD{Wp`> zNr7tPa>-aFCQXdYp7^1`h$ZXj3$Zn;7Gm2C?%&6+g!cKLST;0=EVu~b4Ek;|UbzhX z`ud}pdTV&-D_!B`pF(y^Ra3)2x4lnN3LSiZVlsYTnf&@nQL9!?HJ#klQ1N`WfB0hS z`zJ`3s>L}0eBt=z{%KG8Vz*+ociUd3=J>JAV0Ny-)YpT*XE0op(c;NrXC`|0?m#>w zx3FX1s+vfrrR~Q#A*R7hoEz8cpsrh2dtv0M8(Gv{XO;Av8~ zdHDk@%~ER9{I3KM-CjO`bov) z!AlG3VFL`=45Xa-U3I!a{w)j1>FNzXB7k zZC8CfR-gtS{Vu9-PoJDKd4e(xN;%848A}NmRS28sv*ujw1GhAVS6J9I2n9W-T6rU~(wkcr z(Z7y}W@`-)H7UL9(j{Bz`dsZgX1Z*?hGCm_d(+uq)h#Kf*LY1JGjPsd%RTJtFjG6O zcNHraFTf>t{0xUs#J6kKJCjsF^vnQW8ctHV+HfAKZCVU2+Z#DJu2~hrM_0MkbntqJYX&RU?2cah+J)N;;G$vrk7)X5Ck9Hmd*dq>ThTwzJ%?zTp(I%Us%->v6+g%YYxhZVvQrJBEo6dh0S zO}x00dJbn?G_yET!aKJn&2)(F1_nmN_hmcbv1RDw=qm}kx9o}T;K!=BR&Iyz2lAE7 z-Ur?BEgiBg?(`?}n_u!zvedGT@rfX$7?GDfanaA3>UszecjpEZ|EM-)1JjQ_66hsJ za;@ieGH2#E*r73mTu)U{7X6siPc6ubtgB`&HuG5FH$~*62)Wsh)QBuP#(BP@=KJo;KFJ)T#Mblj+E5Z5Ayi20Pedq4 z187gcb$%<=|J7?>PEYzchORJLv&wOZN(iq_u~d=d#pBgC@g{J$6{G>=mcWp{zEQ6> zDn*fdj!$l$kq(j1CkNRpu8bKWUU#djp0~pR`n2cA^Xk~419DNRFT6Qo2XqlB?mMIP zsA)$pcWg87zwo$(l&kQD@@MCYqKlSKB%uC?l~8 zy8<1cE@}VGE{tXReZMT5W!?lX+p}G|;?`yiNjYYST!!7k>fFQ1#9E|mu7bwn+?PJP zWIlVN&D{=ku9v82PhFp&pd2Ya57@e+_i@zYrSFm@Lwn6QD3T(`5zF~fTe+u*IbO4M z*S&u1(Xx09DzMBJ4TUIhdiZjy3x$VQWZ3hzc=$>7WFoz)Im|mlP5HuFpUQA|We|OD z{arFL&3(bUO@%zRINA7-8Fe=Y!OL=fMJ4kerXnV`K0+&nAVf~@^S#zSr{m;j}k8hvnQIE%OuM)Mxgx%Yk;<^y->yrBU3n8!G(6 z#O$l%xz6lg{i!AlLcdP+-tPDxjC>cWna^a(P2Kkb#F1lC&BJZrR=fhdCl=xzHyqV z)DLN7`Glha>Ad3?d>!Mn(rM%C$!zxI(Y*r=1s0={?dl4(u>IMll^D4>ywZ$ ziGPy6e;yKj9R#Ikecsb-rha<}HZ5sv#pKWddV$D zWLDdKw9tGpLU!KmkJ^*+vbtj4DEITL#dvICmrwN6geMPlgSEbpB09f zgoP$CUg%+9Q3pgX0V0QU3u$O89Cj_-dKd z9ns{1T*icc_mxSp5jV0B4`x`_(VitLH`S~1k~q`5Pi_}fx9gtp(EIq6sBZizv$xMf zadw3s5B7s@w0&zj#pk=RQMA#i%mIaH_I@knFNg9^sBEp1qMfK#6yXxxXjJ%-fhR>H z%ol-%{Yp9J6j!(KawKWAi-OBs{xUQ>bb_+feV>`{2eeHA1Q=$D1Nv|A3nR+oLT7@& zTxz{hw1WWLG}wnpFzs$N;`*$ZK~TA^Htor~!F~SG&G+k0N4jrshmvcgI|RhF(=>b6 zaBiiVx~}Afq;i$!z5~zz;cxE=qnsndrCZ&JP7IFO_(7G5(xh*Z!QmChlNEAp8Vfqw zDJSb2k)9t?eq{x4bSUsCvkbWS7IImvzfOkMP)<849L z@6pYkgAwTRl2{Q(`(IMz$Sz+9kBpoio?Hc!7C}jlo6b@L+eVCC0xJ!~Uzl7$TFNwZ)w{B)m-14^f z{TF^u&N~ywQBrox_UW<=ybg<&tWn?Gw_`5+?6O%k z;`Myj?0;Bn-K@>GMeI2rg2o}|h_NzS;B54`9zRKMgU+EEWt%kN_ESG{mmKw=I8yQk zO5v%RRlHE9!*Pm@duojhR(dBwszwth_@h-UN`+0Qp*WHs6B8Bw{MHJ%p;@9v6m5(q{ zt$TVUMa8!F!!dHpBT@<}^Fy(uuh5G4d;&BkW;ArK!EqPjrfTP1UwHIky8lG)og%Qr zl#@Bd`p3@^@dByPLgjx1wNHvCy<4f;!sB>I0Bi84kRrDt{GY`p{e3U|BEy1d?SDpv zYOcs;vCiO`sylmV;fp3(YkIdc({2^&M;1pTGU>2|Q;7&Hx0P8jLsNR5CM&1m{imRi zs7VWsn~L;ke4%(zv$@1wurW^BVo9Hfz%-#UK0reT$r%bl1*UJ)4Xkd!q5$8PVXQgb zi|=ggj!av9)cYdTM{&y(=%-e3F6-5O&a}a5wqvS{1Q{)0O@GjWAv0q*`TBp>7uH%z zo&TGPx}NcZhPE06Vts`#(EG-=7MNOj1Fv!!c)1kM=$v3n``D&nG9S<)qN7 zaz8W~@Wp)SXg9igOjvs^Z(!-g2-BcP3F-s0j>z-kJh}htD6!gBT=|4Ls+9aQNu948{#Qf;kEu9LrSYAyb!egU#yXUsmi$FN6C{ zDv}Z-FOPJ!>7m&BxHklx8m9-Zk^vIA$ImdfLZyUooe-d!H@btpj_X}dj;62;93L}k z{vyMOq_w>opw|en?T=hLP_~s=EFYtLww}n0K5gCH5@m9o4TmadV)EE} zF7@38UJ{fCQnE&EZ0`#>&N-?`&Cp6n>6(hro8NzK1x9iB$+3G0>laa4k)xdi$M84v zH1BP-7WQcN0tdgoYeOI62T@Pkvt4q^Nj-dQ9B<|dNECS@PIkzYrhpJKKOEbB4eWvFG9Kk zFqplVmial=&Ge*}+mRz`Eq6D=?=1caKlsBxYYIObEetQ<4nXUt=KqDONPXV4jvuh@ ztIKQf!XV`N0aJD4@%fA{5d{i*f34FeNNoUs6%(2CGg4Ct(9k~bYh;LkM(Uu;cDv7m zp65P=%mDPhg78W;qcg9rhK7c_JLuB>z(6EZsL|}a-{y4#(4|$0f~T+dr8?KJ4mStC zkpX~hrq7(+uW>Hxg-(g40Oi9dGi zm7ii+7{GV~lx(?n!`M`SbJV!dODh1G3JR`Hf#%n5?AweOND`n}1_K{A9|40d^d8I9CvQngL^kGPU0V6!3cQ>&DvGQ#9+I1GK_u}?risz{ssEbPGclb2)Vlr9D-X(3^o z5*}zU;bCE?7Z-f4e>JE=w3#k;N9pM4!81YWoD0jo@)M#TFIFxj7W8iPee#rnpHc?s zN5Dvs6dMaHLDD%Cof8dQ7?GUZ+?AD;7!o1deT`q8X*^EDBO?HM4xj$|9i{&v5mGz= z4ksty_2KAi@SUg90Lj(W)BujOn*ueD z3_N8V7>|;SEI0FbaX$<^g0YE7I-eU@RpBxma49*sbZl&Fe699RGMm}Cd+XP)$c@_p zbx2@pU!DGpw8^T`!YYAycreqJmLC zfQZq9)F$ANXaq1Y1OxU4@Zx??1zcjMa@sTlx`BL|Bzhu*Ui^RGV0PU8KtPaMYc{UM z8>?r0FjEZj>DNcgi6}6JE?}2Ik{ESU*e#|2>^L_!7i=@8xa4FW=e>zY9PlbPBNL-x z4R!y0ue!P#gsUF!E)r4l=9Bq79A#uiz{dG^qh|lR^!DB11Ui5s9^Wx4`w563Ho!g9 zEA{G~Nzo3WE8Ol=6mumNi)X;7U><^oo4w(0!^t@~X8%1VLgVVbas|M7gBSZ}eb3|1 zVxz+r82c>-1_KyA!v8Q`(ByJ&lKkyHK#ha@D}$|N?$6@mA#H6%*^EF<^5Bb?9@oL20bCYy}e*sd)nt07dL+wjV7~5 z6QL^HJc9v<9gqq9$`pEuWNJr1K_TX{O;alVg6e#UR{AbET)J{|n?lF&gQg zdfCUawy}|Tj~*aAVa}c_6(bLRWMv82Ouy!D)i8&Lhi~;qMMg%p_&)Il2!AS8;pF5L z&7PQY5V^;9&ouGPQ!4&I4ubx(mM|g{CSx%|&+aFy0y3ed(vD6}FV7El$Z+v-ae<^^ zAM>FhVdC$LRV?=>fI^!gx=>bBG`LlWk_;jq!Dlrd{7$3H%ErcklVUPBG^7a>(|T7> z46#52DZ>4$No7q3+ily>`&46&uB_u2YCk#HD)0|f_IQvg>(BEl%NimGZ~e}4{= zaJu}wtFVMbUzSJ^Jvx4`A<$ZP#YIJ=Xb3jT4%~!6U4S-VxDya-`nR+^B+#k-a||07?IZ?LKqoPxvSY)`QhJEO@g97qAXAft3jAGN%*JpvPV{ zdjssKADQRpj`dnL3xNY$c*v3fMi0Rx`hI$PIy0j}KtMpYuUI+@bYfy8k|Ex|Z*OiI z_K3p~$C$AubJ_kzc=M*-TnC$ynwpw|B6!r4;A4z@Asr**PjekKBnSxcfXCX`$3TDq zGMCC_7xLu`*afAe;0JuYX9IV)W8G&C0&`5j&c>PyC~I|c$XDWF#|2l&8tmL1Ix?HQ|OvxV9kMS0_9b7*(tUE>P-=!DclpHhr4@T zK|ymfSvqKAyH&svDI-btFEk0*)# z{E|l1=YV{%Ju$Re!+ixd`(!RVz44a^KuKb@Kh9#$GH_G5_W9W5ZTYdw9@lz?-U(X#+g$`ujDf}xqL{Ffve(JV(87W>o9+JD{JBs>M`t2w~+-3a)%Yxcyi-TN#8dde+t*2tyXS`NGG|IEs+?W zrHT+s-}7t3{H#D#H^^Z}On1+mP2ZicF`j>Ed)AXwU?vgjn5yb_Tle{h@js_2Dd0#UKet)N2uZx)ld}kR%;l4ua_=; zYbRZjSnTXwe1F>3zd}=Q=5$9pO6KRnw(Evs%3f4I7y}$mZBA_1mn~!xqQFO|hKkUj zOm&sOrI76>4jk8T$2h3Ky6u%R!8VCPC0r95cQZEx61`Ut@Tetiw^m|Pf|_yxzHgm& z-0BdejSkRVdyQ>>LHlM3z;rRLuQ-K1q_JsRVV<7q)L}i>YdB z^fvl2{qPGRJkwG5$|KrDxV^&gCGCB)A=_qB(lk~Ud}2v(LP-dR9KPD2%Uz_LbrFXCM`eS_=e>&2MY1ZJDf|@rA+y~%sc;q z0qumB%IaBgMdm2RVlBknb`9;_U92vGm_QGapE=Fb=pO|uY3hCEsi1?V)!ZTm+52ikU_*3n=()5Fgbe%c#tCN%o#qZ#D@?l?X*2>(o$oEHAA6e*T zY{74Jng;i8Llfa$XvnLTWT^0j#y-c|;}gACwZKzwbFnzR2yG{HnE5&-W=bqsr_gkGM;Sz#Ug3n7VL58;$ueI_qr4Fi=zR2w@43ZqX3X+%WAVWHp zGwz)NbD1F!{HC+_buvNk(g&6<_)NTmsZyLWwKQQO-o5Ydvjqm=1)M30%y z7R-6m8ZF0zDq8qw#S&1VmX@zj5*7~W5U}x>)GVX$wXwALQN*mAt{C6=K2OjXLm+>r zOR=DH#k9HUhi)@w{;r$TgKAkyPV1RL(6!P%8e@EXXH4MQgaE`PsZgWZ(R)8Tp-+q8V((j8i{UvExwmCaaD_tkd=RtgQ1# z2J*i-&!@Baa^ARa>e6tW#JIvjwz&pTOgMksywx40VZ*2C~v7LJli#R_!bF)n|9{Q$n@=h=gN{{iv%$rQm|oY?jaIP{k#73t1I@{;HbIQ zuyMLc=Q$>PR_d6mruYkOw&ApK6p^2l7jS&jpH^4|Zkym`ay;pmKK(q2f5_}t(uG#Z@eI*t=QA{%E_X+g+z~WO z&uOo_TzgUN_j?18Btx%)>+@vvBoAYNrQtAhn-b_5L|GjtMBXO`5{}Gz-2D=)M~|k4 zfT_c4U`VP>stgz$xRD{Be^5EerO_qH!$8EFCg*#bnyWGhoAS`Btu}Q)KvR;;Ys}qm zS^Gpvj{$QoQuW%o`xc_jx0Gwmg&m}c@#mnE)YbG)Pq+(i#luwX$=P&CHQO>CHi12dNYnViV`!6H*#;9FyKLnf{*)cTJ(SY1{ z7P#~&G-%+CQ*HeNGPZ(;H^X$$yOo|_E)UGOUp)>N%w0a%lnzHrW}y)ac($mJx*yqZ z+)TGk!otFo8;Rku?=Dmu38a}lKi)}WIbO_FPY(CtYa)ejmDqVS?n|i3OvjerjJhZI zzR?;m6;8;kz5cV8gc#h@u=4P%m4E^Tfn>|pZh5{T4#oR}dQ$NK&$Bk_+2|4H>t;7y zZZuV*wF;%L1rw#oBxl?HHax>?5>ux|`!BgiB`Nk&?iE7iK3 zzMq&*oZ`u6M>!$Bg^n;sN5hPQLQ6`x70VxSc%r@m=!u79miYXaMsHBiQj zVc)P}mL}n>b&}*qzQmg|$4`7Agd-?xJ){7l%#4XM=`Lm?*ZEwaD(2eR(5AFRu}q7l z+hU7c0o2S0v%IXedR7l-%1j=_Zkje_67Aety)%a@TPd!OhhBVO!#}f zX!%xUWr-ZvDfAgI2g|XVQ97)}kqR;PId_I&atw`c*L9d?qdVC3b2r$K9GcZy7rkoN zzhfA&L_GJ^DoUtVN_&C?4q8Sa(6@+Kz2tJ=K|xBQ{nVWda00sCE%DN%mewJL4+Ju$ z^>;)^ATb%xB_Hbf?m4|5(W5DwrZHJ%ddafbxfnYluTIC3OTZ-*e4XS3in2)|(&8d2 zdqHBdF9r~Zv@{&JGQd{b<&n>sBOCj|;`m(`NndVaZpe(@ecQn;7dK-3=6b$$1tVY8 zn8y@tj7O#b+h?(Z`0Enw93uJ>|&2( z>@Jx#}c_ds^B~`u`hgsgEXp<>-biEwsO2uS8n}8 z(*)F(%a5&&$X8GhP*HXd*1xR7u|4xxfG4bc_FW|*t#FcPk>2O(A0xqmAPscQ_`27K zMOAd?x1Zx&CXw+qm&(KC{{CoKm~sWRwN_w;3Ni*h`C7 z6h^b(F3l35y1wvb==mH_iRVT?ZZHOz#N4lMd-K(vFQ^Bc9AhP!&ZWI9+Ah$qak&~+ zai@R$)?p*PGdb!iR*0c-Z9bg4+kMk&ri(d4So#+l2k#Y469>% zx@P7rY6%}C5*9L(_Cm2;3sWLP3dy?PMs2O-vt&GW&3vjh_`q;SlOV;l{3dhj;sBdI zBW$lOL5g!$Z(;N_+E_}S6TNCu3S+fnM$z!c=K8Ff+a-#bC%!GQXyodT4frR1LzWd0 zlEpn6X%^hmF7x^M5FST!7)a-D=9c8_wDkcm*nzv{n&R8gdZnl3Gwxq0++3Geb)Uz^ zxvZd%isOS8Kr#rMjV3HzgT4ff`jL3PpA1-ya;L&Ln8!c!z-T@$P3NW_Bi~7X`i=#{ zEv^jDaT%p40_66s0}WjW-&3qcx+&$@o+FrU|L7w?&yfZFRW8?mhw z6ki)VB@(T3_{6S;t2btFsiXqnWEE`lGrAAjKU@|+xE)~JfR}QTzn0~ufJ;B-^L!tY z8cJYCZ1~@rp^I3dTy0a4HM+I${$_IRF-Gt1 z&0Nf``1ohoXk$3!d2Iv5G;f;d)y?xV;Jk1sp-)&+BrHN8zcFZc>3AT|WY zz)g#!C{&;9fBYmq%%TA-;DM?Vl88E50-2mSJ>LUbaGmU{O&h_FbO zl{lskHv%{}pTsAq5-_31iu%xYr*D+a0}z|;X$D+W<|9&!qv8sEw}ABn{_NcO3hfx_ zVn`?EzSl2RDSA%#86$|wKBvH=y)L|Sof@AG$+exnlCFUJ?%To`F0}NDsXj@x`H#2( zpsZqEY##N)a#=I)slrQ?X*#D@(Y1nMCQBrEq(h>}qmdGYIf?AY{qTX6pUcR1Yq1q2 zHWt5j{-dQL9oisvK!f!}f@(u;pt&sCWkY6Gnj#0dz;+}|uBP7*xPJlra_h;)Pk&v( zw~R@w!Ss4tOVaj~H356{9G^3%DFgVVM6-8?)a%*D3MO1F-_(x_nICiTd?&-?>B@iE zwmanrp6S>B5Hdg7I2Sv_dSe1KBik#4;}C6oHN{K3UN z7-B+v%d`GbAub%1U)8ATe?Lje9KY$n5(08P-G|DxUiIS`6wA_Pza7o9H~->c@S9q_ ze=z+f{-d}&@_VfS1twk-ZwcMfh^`~wx_s{@(eh~pjTvfq$Swa9CjU%09AvO85%)me zH|Q&qYRsu|#CA$FH0M;h?RLTg5tw!*LpK|@c%lGYWUg26bX)hVp$Leii03A%nJT9} zUFEz2_PEUc23G!T6KA#&iM}pbC6kTzWWX+Z_c(v0bp_>O(>_7!Nrv%#3~5y(C3OFK zX0!gWq+Zi@<&E~aEnIs?CKh{5Xr?piXOuuVV#O(ux0k6-@St4aise0q&TSl!KAx0prJ$d{U z12we(wsx}UKwH&r07vHg(s#EWIT&l_@_<-%$(iA_6VvIo_t2})7;>YQSZ_7upaLvH zyD-9j%187&x>#WZ48ev~951a+4Tl2ZDSN0F#*aeQ7Ky*9vGOF)j%qtw*Y~`m;_}uNa==K{Oh^aNZg8Id9cj$b|Nyeq`9XvH}dN1h1 z+K*5;b3SJRkEmnw!IeEwxS--KEij!Jzpfjy{IJKlulSx)Dj~{`t;`r}m%5XxM)7sfoODwFfmn71}8I122+MV{sPDrA~rri({VPORaY)!CEyD`y=M ze}~ifw@~D(aQCusf3N3hjYck}20cWGaAYvU@6=F1&t>)@C)*!*yIg!4Z)g9^GEn$c zjNOuc-P}V0o?(*VnfMx(&?|^eLA&zfvi6NoR6g$=O-dCM8bV{}Oxgn;gfufP@CGs(u5Xj&zl%LC)urK<8 zpzayllk51cP#?8Pg}MlhTEqB}+fSQ{(jl#*Jd;Qwdvb9){N$^%1G|Pv)nFrsL&YSq z!g;i>&Or(&K01!yjOV7`9i$7YND4#5H>njn>c3m|6kKJ!c&5g=8JH!~(a0OILy>2& z8!b(G4=FQ^AGlkLJzX$^`z=-g@07C=)zAqAc|7uJ^EGYQ5SKH7jl$d^Fa6?zi<~&< zQ2mA|ayNuWQMov^^5=Hpfr?{^6`Iv2dbmiW=UZ{B4V#D{oUZ;!mwx>B0}?`5e2#C2 z#@@JiN;%*@)J*OyY+(GAV#E}X1;GO9Xu+QwOomnNbt=(^UpYL*-2V*OExt+3U#t9u zj9amWZT^0pxZB5o*y@w@va5!29a-7R{0hChj|Ueh=CG5_%73-bP_{VV_6HaV`3JWR z*_oMkT-E1<5T6ymLY+7Nk9A7;J_X9bc9a<)7~F6{kHB%LSE6pK1V>BZifDAOD}T-Q zsY!QXR?S36W7`Xa%H5_)dbwmIWJ0+$=3cS4$a^*k`?qIc_M#l8L-VOeenGV)PS4Td zE8x>kEJIseBr>jOS*cn~e3N^8PJ-WrD-g5fiV>?hL7NW*NK9Wj{mB52gzP@ySmmd! z+^*(tFYXq#W{za8ne;C5tx!B`{7sozP-*qsW~dh4?I_Q@RwZ47+%mR^TcsOUh@cMB zGU~%!mYNoW3b21O308`EYSTHW=Qf*_z3$w^a|^tJF@D6jF~9#{HA!S)!U-aK6(VI> z--?2ys6a56Zfl23i(_$hnvxqOh>BFJylxW;BK+McornefAR7Hi+N~^tiPBTNS#WXR zEt5*qA+M@Jm1At}r%baGWoXB)bNI&~`~5Gb#rQ#8-dv+r249{=CZn08_?|sl{vkT# zWnb;%v&T$y-dtx_)_=6v7*p3mwB0DCM@Ff{zSv(y7a<|+Rn{C&fioxX4$RcYO3E{m zRzb!tOo)_rJ$|-({&<5Z^+&<$Ptyv=9L8tg0c65K^B)%q$7P@R#He=1J~1d&2r3eq zE6C^*Bvf-AbcKrjufEPYD$1^1<0A$rh=9^DAYCFzqkz&a4I>@WATpFgNOy@kG%|p6 zm&6dFA_zk_LpRbOHNe@v@A}sH{y6LWKWo;r_RMqdeP7r0yLTw!A&B^J+rK-4m6KR< z#W^~2Hf^3w)MiPzg*p0D?O;p?B7g6lrx(te;8yHi?LKdBOonZ8MPB4G?qJbe=1!d% zo(QS+3pLXX%<%m=prF4jm?*DMLQTKZ@hwpdzo>fl>3G{@fltICcG{)z9@j)VdrgzI zidK#EpT)mF51O^$)I+YQIk#5M{n%syLo0MPNZWP1*=tGRF*WOyx>R)`7gyT6YbGBA zi^7SvPiBD3Ksm=T)aH1VWHGbR9euZeI$shU0`#8zgv^i6eZjqSoO1L`!FNhWj8Cez zx-!3pMTDzQVtB$!PY)>kerVeukJoGpHC*`Vn7hy>h_$*2!p0CoqVkPp=O)no0fRl)c@2W|EBcdKq^nAXiIORx-~=}#ydYn|jR$+=n7hEx z3B>EvP&3-)sn|Q8NiTV!i-RR!$qJTAh>0vdwK4JO)4t23XU#1>Td76RwxRcLDnpeh8mJ5IPXpL`#O_Sf-*?aBNvFYN*E4KO(kz?(6hqY^g@B#|chyUE#Bs zhR@(Z2Px7DDBWtdY3A8#t4TlJUxGg|s6y8BXfJWZ@iw{mrgqEYIC^YjJOj4bK)XT?W#F|BUsC!%v4Ue6OM zp>U3|il);8y)sr)_cgBX{!P3t#RTVq0b5`!U;HTfijPR+YMrimYAH>O&Yrhgfx={Z zaO>=2?f(+R?QzAn9R41ksG`kT>D(QvcG}28HHH$Sg>s&p!aTu2@xTnz)*U)Q@!?Ta z_$jqi@rP2Xx!?|SgL^onc9Z;Bd7qY{6`sc%0$@`)_yrAROowEn5rgZl2Hhgs=>A|r z;wVF@w(}iys7!KQMbm4^sLz& zGz|J2-MbN{kf}8ulk_VhBO(&a_4C*feViVXvJGdTF8froTDt#D491dp#)2fc?>Lp1lT;vXvJDmWZ4?l&C`xbTZMsk2gA8CTLjW^m_Rj!i0Z zc3QT{(7tK!Zhsv$j3;YjyE09kqdUH;{Out&JD*R^7(WJ{msgD-pj+GX4^%eLFWPTW_waFoyZOftfnuTj2frJ(EoP1N%aoLnpli1>(a6#_C z%X*R2salrM!`6s2BXyKe9_v_etW&ewyVlt;VummZyb{U7Y^O1=OA-GLGARAG9^5Ni z_B=Ug*qV!58hgoWs+z^*?R9gLt!ApQX`3E8$k)gjOTrpjIz~!o*F8FP&-#lub%^L_{7Qwsw5=D3_ zsLE_M!m0-jEYCEZD;JXV`vRK=x*Q>I&wt9j>DLr|Ul8o>#cs(hM??|VHeY?Ch)A|5 zVRx^8R50#2<>clT$-qt`H~jfIH-@W7tM(AM=bfsCCc{X z-h~q!pE=VPvhluNNF{|5Ux&oUPexOCaoE1!)bQ8JvO9Sm=H`vl=>2#uK9i~bmFe%t zv6Pft&8f?1$9&hAlxYmNi^_6E!7(y>vclCs_}g6FiyCMq=h;dw1aYInu+Rk2@IJhw zS-gAV2^5q%A#7xs_{kHL=7vip=vjdBHty@O2rP}t`a;lKMF_`kve|YLPtOk!eJGE$ z-3SKq&#vj(kaBg@I$i5dlyieyAiYqJ$BqHyt+IhB?rahk!h)N;$BbPw|9?Fg*l=0R zs=A6_A+~Sro{j&42y;Uv8cOCwe?Eh|9jT5i9}|lJZ75Jm!J15&HDVt(O0(+)j!G=v-PHcWAO|Qd3!a; z3-Gp(*4mB7QWDCI4VJx(7veLQ>BsX~FSf@Y5yX%Qk%paEmzISMH(sv@v;eDjd-Tr0 zRM4TFPHMbpgT7Z!i1Al^eSWW|rmU%>8mIaB>V_i!C6^cT!W%N})PFmn)1!&A4U3xj9Ch$9@B?0)o0qRXo#Wddq`{Z>%D^`><8ha4!Xqu7~Z_p;YLdlAe&WH228U z0bt4MQ(p=}sA6PWY3^;*+cHl~!r(|``G<9yF+ET4g0U_c8sHUdqH~Taw{O?6J&guk zem7Bt14&UiRkvshdyPdN@w}05R0?eRzWzoaU4F$h4;_Wue9bIi0Ziy3>0`>-Fy!uV z_PgaP`k^LV_jGQ(R~2x6_LetH+2HPq_|SR(lZhA1={6w~#(d;LN<+2xaIZ8zH|sTc zyH+u^Ok{k1s2Jy0OUV4i`>-;0T5@{k&&XMVK4HkA#RuS=NVblYnhr_+FhhUz;VtPh zKfQw(2yG85mf-#3uhg#-kXPx5AICf)K2FS_;JP+c+j3CgKYtae_MPvc z0)LuhC_R4yJ%4{bX;3@ud3pyKC$a0VzR}Xb=|{g&q9zBn6?UzcTt0rgGtf5Ba41%pt%7%-6A|P#8aw_nROX^3SU)6L=VL%2`#%7mz1# zcp({I+j_?Hzu8qasloJWu3b>JZ@88jNI!jZ6Etf*o*FRmTjAvWGw{4hcL#wo1^~CC zmb?EfOMu9Y#;VQVelg?fKetRZ|9F#`joc>}`33u?923Ut-PFRH+}A7%+)hs}SZc04 zLfkcpy?w_jQ7c=8hhkS&nLf~~ywlRx>EMt-6@GZFx^lLVin1Pts0TC8?WUZR_->5R zsGD%=Oz}98{uJa9a8AM>>@%uw39=pf`dil9_hv@7+41e%hFbqwihg@pvCcRmd3qnm zXY#ZRhwq0el$8aB$s{vg{yKmd(TqSZVc`91nW!8d)L zW;@Qcc$X*xdExq%Px+cJ71(igKJieb1?rdWMJa6GYM13jqW6_QLmHTm{GDDU#B&kv z{fxSj$+Pn9){aIC{pt(~;bIAHftfuEV&HzZVP?5xy^?KP0>ujBla$ncK)1Y_`md0@_JmPXfZ(VfT6OU;ZZ$_2H2k=~~wA~7D0fZAg& zyLX~$qcZG7yMuQdqmeW5)xFkT_DA)ZU_fD@PUb~~=SvCCZ*)YleVWMr&Vtg3UD0S0 zSnalD8=CM`^hMNmVX!-f?;_I<;eEHi7Li0~5iYcjX^XxA=p}O$I|C35K?tI@`=FGB z!S*~ps?kmI zTi1>5YYrjb*9G`#*(!xC(iwx;m>U2-Kn)db_X3 z>1$GH^S@2q_s&M%!6*CpfdT^d?E?o#R8biC2Q`{k0ozA!&zmKd8#PEEfT?I_C!?YR zHtbD=_ts85`rd$aD~-DXYCxPnbFASuN3aO zG)W~oZ}NBCZbm#NpKPSyl<3&|H$(0}Qa(1N+Vjsydh|cqTtW!ttS~qX(cie) zvCWw3@bi({Y&Mpl#=$8kt7Pb67 zfl~wdwz#F*K6X&{1-stP>c7y3;)`NU&u4UYl!VuWc$FzfvUPh)_C8L%8OQD9byuh+ zwK}*fY9^-1e4l(2F3Q6;6~eIfjPmDDUR5f&y>Y#CzcUgRMe<7HiGe`b5+eNWrgE0F zX*rm=t-leOx-^Hjqn{D^q)z&-^6a#X12qV&)AVKGpKMmqegHM{tVt?!EPR&8dF@7+ zgat#p#QH@Zv)s6n75+BBfSMPvRo)6!zvkx!+s>oZ7ffU_Hvm&JswnrLihxAXVO9u* zP4bVeGoUx)N*r|0`La||Lp0+NDGvkm?c>M&S7g8RT^donU5;Q;c6u7r9V_3*^eOuR zb3cFM(%AqLG4j?mQyV+Nm-zz{uvjKEn-C-amO=uP=Z35c{&NDUmAu|rfM<86E3BYGp8+w9!ez+)*hFPeQ5Dj+PbqJ?r0;M ztyd@Pin0-n^&Nf{4b~aFK~;DP_kJ75&wn9H^02Rv9yhY470!@&&4kjeqsXb9wEj2? zwMM$oSzT{_OQGO@kR@J=^i0{2FAF{J33?juL0IGADNeLpcXBZ(W2V=lVd$L`E@0aY zE<1Q5+6zMViCl{pMHj2nlh955QtlrKYw&G?1{6Dmg@J*-5E zs3_tN9?7+!?WSE&A1q@w=oO`|2eAW5EKvC6cBseJ=a`u*5Tb3xP*1DI{Z#NpYIXBB zRUfe1r)W0XAx=zguZi8rAPkX~Za=&lct&ZQ*Mk3R`w&1QSE>7SGI3dJ7$s{ra*3%0 z{!UQC)Ba`wUPmq@A$jRB(pT1rt)v%(&zS4Rp@!m-SMZy91OI|Ee=n%~4@DDmvM=F3 zRVtBq7VQRjjMs7OvHX%RM%2FL9!2^Y+hx=p-L5RO(0{MabR-b=>g}<=`tdK=Ja0sKk~x+mz=rdwe4?EZs0i~N^