diff --git a/notebook/cviko8.ipynb b/notebook/cviko8.ipynb new file mode 100644 index 0000000..74f6e01 --- /dev/null +++ b/notebook/cviko8.ipynb @@ -0,0 +1,2457 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pandas\n", + " Using cached pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (89 kB)\n", + "Requirement already satisfied: numpy>=1.26.0 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from pandas) (2.2.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from pandas) (2.9.0.post0)\n", + "Collecting pytz>=2020.1 (from pandas)\n", + " Downloading pytz-2025.2-py2.py3-none-any.whl.metadata (22 kB)\n", + "Collecting tzdata>=2022.7 (from pandas)\n", + " Downloading tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Requirement already satisfied: six>=1.5 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Using cached pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB)\n", + "Downloading pytz-2025.2-py2.py3-none-any.whl (509 kB)\n", + "Downloading tzdata-2025.2-py2.py3-none-any.whl (347 kB)\n", + "Installing collected packages: pytz, tzdata, pandas\n", + "Successfully installed pandas-2.2.3 pytz-2025.2 tzdata-2025.2\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "loans = pandas.read_csv('loan_historical_data.csv', sep=\";\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClientIncomeCreditGenderUnemployedSafe
0K1HighExcellentFemaleNoYes
1K2HighExcellentManNoYes
2K3LowPoorManNoNo
3K4LowExcellentFemaleYesYes
4K5LowExcellentManYesYes
5K6LowPoorFemaleYesNo
6K7HighPoorManNoYes
7K8HighPoorFemaleYesYes
8K9LowFairManYesNo
9K10HighFairFemaleNoYes
10K11LowFairFemaleYesNo
11K12LowFairManNoYes
\n", + "
" + ], + "text/plain": [ + " Client Income Credit Gender Unemployed Safe\n", + "0 K1 High Excellent Female No Yes\n", + "1 K2 High Excellent Man No Yes\n", + "2 K3 Low Poor Man No No\n", + "3 K4 Low Excellent Female Yes Yes\n", + "4 K5 Low Excellent Man Yes Yes\n", + "5 K6 Low Poor Female Yes No\n", + "6 K7 High Poor Man No Yes\n", + "7 K8 High Poor Female Yes Yes\n", + "8 K9 Low Fair Man Yes No\n", + "9 K10 High Fair Female No Yes\n", + "10 K11 Low Fair Female Yes No\n", + "11 K12 Low Fair Man No Yes" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loans" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting scikit-learn\n", + " Downloading scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)\n", + "Requirement already satisfied: numpy>=1.19.5 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from scikit-learn) (2.2.4)\n", + "Requirement already satisfied: scipy>=1.6.0 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from scikit-learn) (1.15.2)\n", + "Collecting joblib>=1.2.0 (from scikit-learn)\n", + " Downloading joblib-1.4.2-py3-none-any.whl.metadata (5.4 kB)\n", + "Collecting threadpoolctl>=3.1.0 (from scikit-learn)\n", + " Downloading threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)\n", + "Downloading scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.2/13.2 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading joblib-1.4.2-py3-none-any.whl (301 kB)\n", + "Downloading threadpoolctl-3.6.0-py3-none-any.whl (18 kB)\n", + "Installing collected packages: threadpoolctl, joblib, scikit-learn\n", + "Successfully installed joblib-1.4.2 scikit-learn-1.6.1 threadpoolctl-3.6.0\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install scikit-learn" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier\n", + "from sklearn.model_selection import train_test_split # Import train_test_split function\n", + "from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "arr1 = [1,1,2,2,2,4,4,2,3]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{1, 2, 3, 4}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "set(arr1)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 2, 3, 4]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(set(arr1))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "arr2 = [\"High\", \"Low\", \"Low\", \"Low\", \"High\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['High', 'Low']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(set(arr2))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "def cat2int(col):\n", + " vals = list(set(col))\n", + " for i, string in enumerate(col):\n", + " col[i] = vals.index(string)\n", + " return col" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 1\n", + "2 1\n", + "3 0\n", + "4 1\n", + "5 0\n", + "6 1\n", + "7 0\n", + "8 1\n", + "9 0\n", + "10 0\n", + "11 1\n", + "Name: Gender, dtype: object" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat2int(loans[\"Gender\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClientIncomeCreditGenderUnemployedSafe
0K1HighExcellent0NoYes
1K2HighExcellent1NoYes
2K3LowPoor1NoNo
3K4LowExcellent0YesYes
4K5LowExcellent1YesYes
5K6LowPoor0YesNo
6K7HighPoor1NoYes
7K8HighPoor0YesYes
8K9LowFair1YesNo
9K10HighFair0NoYes
10K11LowFair0YesNo
11K12LowFair1NoYes
\n", + "
" + ], + "text/plain": [ + " Client Income Credit Gender Unemployed Safe\n", + "0 K1 High Excellent 0 No Yes\n", + "1 K2 High Excellent 1 No Yes\n", + "2 K3 Low Poor 1 No No\n", + "3 K4 Low Excellent 0 Yes Yes\n", + "4 K5 Low Excellent 1 Yes Yes\n", + "5 K6 Low Poor 0 Yes No\n", + "6 K7 High Poor 1 No Yes\n", + "7 K8 High Poor 0 Yes Yes\n", + "8 K9 Low Fair 1 Yes No\n", + "9 K10 High Fair 0 No Yes\n", + "10 K11 Low Fair 0 Yes No\n", + "11 K12 Low Fair 1 No Yes" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loans" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 0\n", + "2 0\n", + "3 1\n", + "4 1\n", + "5 1\n", + "6 0\n", + "7 1\n", + "8 1\n", + "9 0\n", + "10 1\n", + "11 0\n", + "Name: Unemployed, dtype: object" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cat2int(loans[\"Income\"])\n", + "cat2int(loans[\"Credit\"])\n", + "cat2int(loans[\"Unemployed\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ClientIncomeCreditGenderUnemployedSafe
0K10000Yes
1K20010Yes
2K31110No
3K41001Yes
4K51011Yes
5K61101No
6K70110Yes
7K80101Yes
8K91211No
9K100200Yes
10K111201No
11K121210Yes
\n", + "
" + ], + "text/plain": [ + " Client Income Credit Gender Unemployed Safe\n", + "0 K1 0 0 0 0 Yes\n", + "1 K2 0 0 1 0 Yes\n", + "2 K3 1 1 1 0 No\n", + "3 K4 1 0 0 1 Yes\n", + "4 K5 1 0 1 1 Yes\n", + "5 K6 1 1 0 1 No\n", + "6 K7 0 1 1 0 Yes\n", + "7 K8 0 1 0 1 Yes\n", + "8 K9 1 2 1 1 No\n", + "9 K10 0 2 0 0 Yes\n", + "10 K11 1 2 0 1 No\n", + "11 K12 1 2 1 0 Yes" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loans" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "#split dataset in features and target variable\n", + "\n", + "X = loans[['Income','Credit','Gender','Unemployed']] # Features\n", + "y = loans.Safe # Target variable" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
00000
10010
21110
31001
41011
51101
60110
70101
81211
90200
101201
111210
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "0 0 0 0 0\n", + "1 0 0 1 0\n", + "2 1 1 1 0\n", + "3 1 0 0 1\n", + "4 1 0 1 1\n", + "5 1 1 0 1\n", + "6 0 1 1 0\n", + "7 0 1 0 1\n", + "8 1 2 1 1\n", + "9 0 2 0 0\n", + "10 1 2 0 1\n", + "11 1 2 1 0" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 Yes\n", + "1 Yes\n", + "2 No\n", + "3 Yes\n", + "4 Yes\n", + "5 No\n", + "6 Yes\n", + "7 Yes\n", + "8 No\n", + "9 Yes\n", + "10 No\n", + "11 Yes\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=15) # 70% training and 30% test" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
90200
31001
41011
00000
70101
101201
51101
81211
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "9 0 2 0 0\n", + "3 1 0 0 1\n", + "4 1 0 1 1\n", + "0 0 0 0 0\n", + "7 0 1 0 1\n", + "10 1 2 0 1\n", + "5 1 1 0 1\n", + "8 1 2 1 1" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9 Yes\n", + "3 Yes\n", + "4 Yes\n", + "0 Yes\n", + "7 Yes\n", + "10 No\n", + "5 No\n", + "8 No\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_train" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
111210
60110
21110
10010
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "11 1 2 1 0\n", + "6 0 1 1 0\n", + "2 1 1 1 0\n", + "1 0 0 1 0" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11 Yes\n", + "6 Yes\n", + "2 No\n", + "1 Yes\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# Create Decision Tree classifer object\n", + "clf = DecisionTreeClassifier()\n", + "\n", + "# Train Decision Tree Classifer\n", + "# Training the model on the data, storing the information learned from the data\n", + "# Model is learning the relationship between x (features: Income, Credit,\tGender,\tUnemployed) and y (Safe)\n", + "clf = clf.fit(X_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeCreditGenderUnemployed
111210
60110
21110
10010
\n", + "
" + ], + "text/plain": [ + " Income Credit Gender Unemployed\n", + "11 1 2 1 0\n", + "6 0 1 1 0\n", + "2 1 1 1 0\n", + "1 0 0 1 0" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_test" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['No', 'Yes', 'No', 'Yes'], dtype=object)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11 Yes\n", + "6 Yes\n", + "2 No\n", + "1 Yes\n", + "Name: Safe, dtype: object" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_test" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.75\n" + ] + } + ], + "source": [ + "# Model Accuracy, how often is the classifier correct?\n", + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "clf = DecisionTreeClassifier()\n", + "clf = clf.fit(X_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.5\n" + ] + } + ], + "source": [ + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pydotplus\n", + " Downloading pydotplus-2.0.2.tar.gz (278 kB)\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: pyparsing>=2.0.1 in /home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages (from pydotplus) (3.2.3)\n", + "Building wheels for collected packages: pydotplus\n", + " Building wheel for pydotplus (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for pydotplus: filename=pydotplus-2.0.2-py3-none-any.whl size=24687 sha256=c477e8981a47f023f93b6f4aa926f3899a8d5302c81197821877eb34780c3280\n", + " Stored in directory: /home/br0kenpixel/.cache/pip/wheels/4a/c0/ed/a9eeeb08c3c53bb90d3822cf76557c8fdcbc349ee11a011169\n", + "Successfully built pydotplus\n", + "Installing collected packages: pydotplus\n", + "Successfully installed pydotplus-2.0.2\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.0.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install pydotplus" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import export_graphviz\n", + "from six import StringIO\n", + "from IPython.display import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "import pydotplus" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAJUCAIAAAB2UGFlAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydZVxUTxfHZwuWJZbu7kYFVDAAARVRVARsUbG7AwtUQLAVO/4mUqJigIIBEiIqICUd0t258by4Puu6hMTCCsz344vdc8/cOfd+3B8z5945g6JSqQACgUAGETSrA4BAICMOqDsQCGSwgboDgUAGGyyrA/i38PX1ZXUIIxQpKSkDAwNWRwEZJFAwr0wPCoVidQgjFBsbGz8/P1ZHARkk4HiHkd1n702wmMfqKEYWHluXsDoEyKAC8zsQCGSwgboDgUAGG6g7EAhksIG6A4FABhuoOxAIZLCBugOBQAYbqDsQCGSwgbozlIgOeebt6UImkwAAPpfcPr6EL9pBhiTwvUFmUltZnvQ5vLy4AIVCCYpKqOtP5BMUYeL5P715Fvbcx3r1TgwG63PZTd/YYpKlLRPPj0ClUlO+RGQmxVGpVFkVTe3xxmgMplPPjy/9CnPSGYyCYlJm85YxPSrIcALqDnNobWm65br37eN7ZDIJhUajUCgKmYzB4oytFqw9fJYNz8H0Hm+HZ+Jw7Mjnguz0uI9vZtlv6v9pW5oaXNbbJsaEc/HworHYuqoKZR39wzeecvHwdnQO8b+T9PkjJzeR3qgyaizUHUj3QN1hAu1trYeXz0yLjzGcNnfemp1yqtpUQM1LS/a76vE24H5xfrbLvWAUmslTWl4BYdrniFf+bwPu90p3qstLygrzVEaNY7DfPrE/6fPHLW7XTOYsRqFQMaHPPbYuuea8befpOx1P0lRfJ6OscfZJdD+uAzISgfkdJhBw40xafMz0hav3nH+goDEajcFgMFh5dZ29Fx4az16Y8iXy/TMvAIDv5RNfPgS3NDW88b398eWvhe9UCiU+8u3T2+ef3Dz7+d3L9rZW+jOXF/8M8roecOPM53cvyaR2+kO0/I7vFfeIIP/G+hpvT5ewQO/uQyWT2mNCnx9fZ+NgrBz+gjE91NzY8O7Jg/FmVlPmLkGWyI4zm2UyZ1HEK//qitKOZ2uqryNwETvaIZDugeOd/kKlUoO8rnPyEJfvcel4dPkeV8Npc3UnTwUA+F87OXmm3bP/zifGhKuNMZhkaVdZUnhs3by89GRpRTU0BpOfkSooKnHoWoCkggoA4MuHYI+tiwEAMsoa1RWlAsLigmKStDPT8jsZ379UlRaR2tvT4j+TSaSu4izISgt9fPf9M6+6qgqtcZO3ud8cb27F4PMj7hOpvW30JHN64+hJ5qGP7yXFhE2ytGPwb6ivkZBX7uudg4xcoO70l+K8zJrKMoOpc/AcnB2P8goIj51iiXzGYLFJsRFyKlo33qUiw4TTu1aU5GW7P3qnrKOPSMP+xWandiw79yyGTCZdOrSRk5vo5hUqKi0PAPC/fsrr/NGOXRy44rdz3sS66sojN591PNrc2BDxyj/08b20+BhBMclp8x1MrZeKSMp2ei1FeZkAADEZBXoj0ntRblZH/6b6OgI3T0l+dlJsRE1lmZCYlJ7RdE4eOAKC/AWoO/2lurwEACAiKfNXTxQaXVFccNI3jJuXHwCQl56c8iVyzsqtiOgAACQVVGbZb/I6fzQj8Wt7a0t1eYntuj3Izx4AMG/1ztePbpYX/+xVeFedt0YGBYwznbng5rNRhlO6TzM1N9QDAAhc3PRG5GtjfS2Dc1trC6m97XvU+4iX/nhOTiqVisjQrtN3x0ye2qsgISMNqDv9BYPFIbOtnjhLyisjogMAyEqJBwAU52V5e/6eoBXmZAAAclK/I1+lldRoh1AolKyqVm91B4WARvcksd3pVSDGjhXR2lpbFDRGE/kFl+44KqemDQD4Hv3h5PalHluXXHnznU9ItFdxQkYUUHf6i4CIOE0v/goPnwDtc3NjPQDgZ+YPhpStso4+OwehtrIMAMD+59wNT+hkKtc965zOa40zCvW/67RylpC4tKn1UtN5S4XEpDp1Rh6WN9bX0Rub6usAAJwdnqNz8fCefhxBb9E2MF64+eD1YztiQp9PX7i6t6FCRg5Qd/qLkLi0qLT8908f6qor6WWFxqeQQF2jaTg2dgAAoBs1cHIRAQBzHLZNtVvRsdVrn1sAgNbmRnpjQ211b8PDc3CaWi81tV5amJMR6n8n+NENn8tuOgYm5jb248xmYXFs9M7iskpIxkp7vBHNiEiqhJxST7qTkFMGANRVV/Y2TsiIAj5HZwIWC1e3tTRfc95GpVAYDr24f/nE5oVPbp3r2EpeYxQAIC0+ht6Ym5b0PfoDhUwWk1YAAORnpNIOkckkZGrWNyTklOx3u9wKz9h3wQvHxn5614o7HgcYfFTHjGPHE76GvaY3xr5/hcFgtccbMzinfIl0crCKff+K3pidEg8AEJGS63OckJEA1B0mYGW/SdvAODI4wGmVVerXKDKZRKVQCrLTrzptvemyW1lHf67Dto6tpBXV1HQNw5770H7nlaVFZ3Yuv+i4jkwmqY4Zz0XkC/G7gww3qBTKHXfHpj9nQDTY8BwNtVVtrS1/DRWDwY4zm3Xgit+tD+mTLG0YjrLjCdMWOMS+fxXqfxdJ63x49igy6LHpvKVIWur7pzBvT5eiXGQEpJz6Nfra0e3ZKQlI87iIUL9rHvSP8CCQToHzLCaAQqMPX39y/8yRoEc39i82R6FQaDSGTCbh2NinL1y9ct+JX5OsDuw4dfv42nnH1lqLSMlx8fDmZ6Rw8fA6XvFD/NcePntuz6rNM3VFpeSry4ullTSMrRaEPr5HoZAZzqOha5j6NWr1FFVhcemTfuH0h2667I6LCOm0d5O5Szq+r7xku1NhTrrnwQ13Tx1EoVB11ZU6hiYr97sjRxM/ffC76qGoOUZcVokoILTP89GZXSt2WBsSBYTaWpqbGxuExKT2XvTi4OTqx+2EDH/gPjZ/gEKh4H4Sg4/H1iXi3Bi4j83IAc6zIBDIYAN1BwKBDDZQdyAQyGADdQcCgQw2UHcgEMhgA3UHAoEMNlB3Bpbk2AhvT5dOi2b12RMCGerA9wYHluQvkd6eruNMZ/21wHvPPXtIbWX51/DXVeUlRD7BMZPMBUQlehRw7MfEmHDdydOUtPVoRiqFkhgTnp2agGNnVx09XkF9FH2T8uKf8RFva6vK+YXF9IwtOl2kBoHQA3VnYLFavsncdnlPfoo99+wJkUGPLzqub29r5RUSqa0sR6FQ65zOm1ov7b5VXXWlx7altZXl3HwCNN1pqq87vt4m5UskD79ge2tLc2PDVLuV650vIJUxntw69+DMEQqFzM0nUFdVQeDi3nn6rq7RNKZcBWS4AnVnYMFzcHZah7A/nn+lrDDv7J5VCuqj9l3y5hMUaairObVt6aVDG5W19aUUVbtpeO3odjSKcep9wXFtWlzMnvMPDKfNJZPa73gceH7v0uhJZgbms79Hf7h78oCG/sQ95x4QBYTyM1KOrbE+tWPZlTeJ9GXnBw0/P7/k5OTB73cQ0NDQsLVl/p5FrALqDhOgUijfPobkpScTuHnGmc7k4Rf0u+KurK0/ZvLU5NiIxJiwaQtW8QmKpH6NSoh+P8dhW1tz8+d3L+trqoQlZcZOsURWY9F79jOeNz63Se1tG455Iqfi4uHdePzSGlP1lw+vrjvSycp4hOg3T6OCAzYeu+R5cAPNmJee/CkkcPaKLYbT5iJFzpbucJZXHyWvqg0AeO17GwCw2eUKUUAIACCtpL5y/wn3LYvfPr4/b83Ofl5FH/D19Q0ICMDhcIPf9YDS3t5ubW0NdQfym/a21qOr5yTGhPMJifILid47dXDt4XPenq5zHbaNmTyVPmuT/v2Lt6erlKLaVaetnDy8ZBKpvChfUkHFwyeMwMXdTX4nyOt6bVV5p73rGVsoao5hMCbGhPMLi8koa9AsQuLSkgoq36M/dHUVddWVV523WSxaozrGgN7++d1LAIDJ7EU0Cxuew2TOr68FWT94BYRplViReFAoVNLncJboDgCAQqG0trb2wBHCSqDu9Jdg75uJMeEzl25wcPRAoVAZiV9dN9ghi9QZPNFoNADg3unDR24+Q8Ti0cXjPpfcIl75d1r6i0bM2xdd1TMUk1HsqDtFeZnSSuoMRlEp+W/hb6gUSqcFT68d3c6OJyzbebSipIjenpuWhMHipJXU89KTv3/6QGprk1cfpW1gjCR3OtYbwrGxc3Bxl+TndHM5EAjUnf4SE/oci2NbssMJ+SkqaelOtVvhc8mtK39zG3uaUkyytPO55NZxq18GnG4F9iqkpoZ6Dk5uBiOBi5tMJjU3NTKUbUdmWJFBj51vv8ATGOtX1FaW8fDye19yfXr7vLCEdE15aUNdjbrehEPXAjg4uSTkVfLfPC0tyKVtUFFe/LOpvo6dnfn7o0KGE/D9nf5SlJspKi1HnxIePdGsG38FjdG0z8iWLwx79Q0QXZVnR2ZYU+1W6BiadGxFJpHqqiszk77dDsvwfPntXnS+3fq9KV8iH5x1AgAgD8guH96EFCSrqSw7t2cVGzueoXwqBMIA1J3+0tLUwPHnMIGHX7AbfzwHYaBD4uQhNjUwViZsaqjDYHEdK8NfP7YDx8a+fE/nAzQOTi4ymbRynzsXkQ8AgMZgFm45JCgm+Sk0EACgZzx9rsO2hKj3ywxlNkwftcpYRVpJXURKtvs7AIHAeVZ/wbHjW1ua6S0NNb2uvt49vc0rS8gqFedmMhgLszPEZRUYxjupX6MiXvnrGk0LvHMBsSAl2b+Gva6vrjSZvUhMRhF8DOGgUysUCiUsIZOZ9A35ar/bZZKlXWJMGAqF0hw7WUZZfbG+hOH0ucy4bsiwBepOfxGVlMtJSyS1t9EmFwnR75nbRW/zyjqGJqnforNTEuTVdRBLQVZacX7WLPtNDJ4kEklWVauytKiy9Fc6mdTWCgDIS0uqKiseM2mqtoHxywdXkr9ETp75a5NiMplUnJspJCaJbDWR9Dl88sz5tI4+vvRtaW4cZzqTqTcAMtyAutNfRk8yT0v4HHDjjN2GfcgDoBC/O8ztord55WnzHZ7eOn/lyGbHy758QqK1leUXD6zHsbHPXLIOeQjlc9mNX1hsqt1KrXGTzz39RN+2IDt904zR1mt2Wi5eh6iMpILK3ZMHJOSVFdRHkUnt/7k7VleUWixei7ygeOXIluyUhNUHT2FxbLlpSXdOHpRX14F13SHdA3Wnv1jZb4p6/cTrwrG3Afd5+AVLf+Y4OJ48u3slC0PiExLddfbumV0rVhmr8AmLVpeX4nBsO07dRraXoVAp3p6uChqjp9r9PUgMBrvf0+fomrk7rSfwCYk21tW0tbZMsJiHvJ4zeqLZ9IWrgx/d+PjSl5Obt7z4p5Si6n5P757sTQoZyUDd6S8Ebp7TjyNiQp+X/MzhFRAeazoTSZFgsTgAgIbehAWbHHmFRAAAyqPGLtjkKCj+e69ODgLngk2OSlp6DJ79R8/Y4mpI8pcPQVVlxbyCIvrGFsgrxQAANAq9YJMjv7BYpw15+AQWbHJU1vq9KFRCTuniiy9fw18X5WSysbOr6RrSz+zWHTlnbrv8R9yn1qYmaSW10RPNkI2bIZBugLrTXyhkcnV5if6UGez4Xw+qUr9FAwCQ9d8a+hM19CcidhWdsSo6Y+nb4glcCzb92jyP3pMp8PAJTJm7pKMdhUbTOu20VcejbOx4A/PZXTVRUB/FsEIdAukeOB7uLzHvXqwxVX9w1hl5ebe+psrvijsGi9Mzms7q0CCQfxQ43ukv401nmVovfX7XM+KVP5+QSFFOJonUvvGYZw/r3UAgIxCoO/0FhUZvdr262fUqqwOBQIYMcJ4FgUAGG6g7EAhksIG6M+TxveIe/sKX1VFAIL0A5neGPH5X3HUMTWjrGFgFlUJJ+PShMDuNSqWKyyqNMpyCxmBYGxLknwXqDoQJFOVmeGxdkp+ZKqWgikKhfmb+EJGS2332npyaNqtDg/yLQN2BMIHTO1cU52Wf8vuILBDNz0zdt8Dk1I5ll4LiWR0a5F8E6k6/yM9MTYuLqa2u4OHlV9ebKCmvTDtEJrXHRYQW52UBAMRllUZPNKPNO3yvuMur6YyZZB77IaggK41XUNjAfDaBm6e5sSEm9Hl1eYm4rOLYKZbIKicqlepzyU1OTVvf2CIuIjQ/I4UNjx890UxcVqnTkKgUSkL0+9y0JCqFIiGvPHqiGVI3/q8B95m6qoqs5DiDqXNoq9KlFdX0TWaEPfcpK8wTlpDpfxeQYQbUnb5z1Xlb8KMbgmKSfEKiFcUF1eUls+w3Oex3BwCU5Gcfsp9RWVYkrahGJpMKstIkFVRc7r9Btsd6cvPMOLNZr31upX+PxXNwlhbkPr526uA1f+dVc6hUamtLU21luZ6xxcGr/ki9G78r7uPMZgU/upGR+JVXQKg4L5sKqBuPXeq4H1ZlSeGxdfPy0pOlFdXQGEx+RqqgqMShawGSCirdB0zPz8wfkcGPO71kPIFrzsqtDEY2Dg5a9WgaiGjS1o5AIPRA3ekjuWlJwY9u2KzZtWSHMzIqeXTxuO/lE8ZWCxQ0Rl913lZdUXraPwJJcHz5EHx83TwfT9fVh04jv8nPb1/MWLzuwBU/AMCDM0f8r5/at8hsg/PF8eZWFDL5+HqbLx+CELVCqvx9fvdymt3Kg9ceYzDY0oLcA0un3Ti2Exkl0Ud1eteKkrxs90fvlHX0kbI7+xebndqx7NyzmO4Dpj9JeVH+24AHnV41kV+wo+7gOTjHTJ4aFxlKG93UVpbHRYRq6E+kLUaFQOiButNHqstLAADs/y/Eh0Kh5m/YN3PJeqTEp8nsRZMsbWlZVT3j6Tx8ApnJcbTmGCxuwSZH5LPhdGv/66dklTXGm1shKjPezOpb+Jvi/CxEd5DV7ct2H8NgsAAAEUlZyyXr7548kPDpPf1yzbz05JQvkXNWbkVEBwAgqaAyy36T1/mjGYlfG2qruwmYnjGTp954l9qru7HtxI1z+1ZvtRqroT8Jg8Umx0YoaelucbvWy5sKGSlA3ekjGnoTpBRVH55zTv0WrTt5qvZ4EylFVdpv2MhqQW1lefSbpxXFBa2tLRQSiUKhNNPVPBaXVaLVJ0Squ0sp/t55pmO9dxllDfo5i4ySOgCgJC+bPqSslHgAQHFelrenC82IFCrMSf1ubLWgm4D7SU1VOYVEwnNwIrMtNnZ8Y31tSX42n5AoU84PGWZA3ekjbHgOD5+wlw+vRgUH3HTZTaVSxaQVFm09NMnSFgDge/mEzyU3dg4OGRUtTm4iBosltbXRN2fn+L3TC1LzuKOFHob5FDsHAQDQ2tJEb2xurEeyM9UVpfR2ZR19dg5C9wH3h4a6moPLpotJK1wJSUT21Whva3XbON/JYfaloDhBMcl+nh8y/IC603c4OLls1uyyWbOrrqri28eQgBunz+xaISgmicXivC4c0zO22HPuPhv+l5qsMlHpT18NdTX0X1uaGpEsL72Rk4sIAJjjsK2rXQC7Cljtzz1Ce5tXToh8W1dVsXLvCdpmPjg29ql2K799DPkSFjx9wao+XTFkOAN1p4/UVVWU/MxBMik8/ILGsxcqj9LfME0n7mMIv4g4AMBs3jKa6BTlZlSWFBIUVPvcXWFOeltLM+2EP7N+IJUA6X3kNUYBANLiY+h1Jzctqa6qQnPspIba6q4CZtCd3uaVW1tbOg6+kD02yKT2Pl8yZBgDdaePBPvcenTx+MEr/rpG0xDLj7gYAAC/iLigqAQAIP17LJInLi3IPb9vLb+IeGN9bZ+7a21qeuTpsmznMRQKVVVWHOR1nZOHqDXeiN5HWlFNTdcw7LmP4bS5SFSVpUVndi5vbmy4/Dqhm4AZ+uptXll7nBEWxxZ456Ke0XSk6lBddWXgnYtoDGbUhO62MISMWKDu9BEr+41JMWHH1loLiUvzCgrXVVWUFuTqGVuYWi9Fo9FKWroBN858eR+EweGKc7M2u11N/Rr94v5l51WzF2093IfudAxN0hNiHYyUBMUk89NT2tvbtrnfoN+kFGHHqdvH1847ttZaREqOi4c3PyOFi4fX8Yofjo29m4D7eSsExSS3ud+4fnznWnNNSXllDAZbkJ1OBdQNzhcZRmQQCALUnT6CJ3AdvfMqLeFzTkpCQ30tkU9QSVtPVkUTOXri0duYty9K8nO4iLy6k6cJiEroGU+XVFBpa2nmExSZt3oXfVl1Tm7eBZsc1cYY0ixSCmoLNjlKKajRLGgM9uidl3EfQ/MzUibPtNM1miYmrYAcsl2/V1RKDvksJCZ19kn095iw3B+JVCpVVFpOd/I0Nnb8XwPuJxNn2OhPmREf+a6sILe1tUVYXHrUBFPkJUkIpCMoZNtsCAIKhdp99t4Ei3msDuQPbLX5dQxNDl7tPNc7DPDYukScG+Pn59fP89ja2vr7+zMpqH8LGxub/t+ffwdYfwcCgQw2UHcgEMhgA/M7QwD6DA4EMgyAujMEsFu/l9UhQCDMBM6zIBDIYAPHO4NH6teohOj3U+1WdrU3+eCQlRIf++4l8nmc6awBKkX65UNQZtI35HM32yJDRiZQdwaPlK/R3p6uesYWrNWd7OR4b09XtTEGnDxEdd0JiLG8+GdKbGRlaZGAiLjqmPEikrI9OVV1Relr75sd7SazF5UX/cxM+lZakPsz8wfUHQgDUHdGKMv3uqrojEU++15x9718gkIhc/Py11VVoDHYuQ7blmx3+utJSvKyvD1dOTi5aDU9ELTGGVksWmOxaM3zu5633GByCsII1J2RTkzoc6/zRydZ2q13Ok/g5qmtLPfYtsT/2knV0eP0jC26b9tYXwcA2OZxa5zpzMGKFzIcgHnl3vHlQ5C3p0ttZTm9saayzNvT5cuHYORrcX5W6ON7j6+ffvfkQenPnE7P8/1TmLenS111Jc1SW1nu7emS9PkjzVJRXBDqf9f/2slg75tFuRkDdEUxb1+wseM3HruIlPghCggt23UMABAX8favbZsa6gAAnNzEAYoNMlyB453e0d7W6u3pykXkm7l0A80YFujt7em6/5IPUiz58c0zRD5BAVGJ0oLc5saGFXtd6Z0REj998LvqMXGGLW0RU21Vuben64JNQHPsJADAs/8u3Dt9mJObR0xGsaww75rztjkO2+x3He8YUpDX9dqq8o52AICesYWi5pjur2iL27XNrlfpK40hdXywONxf70ZjXQ0AgIOL+6+eEAg9UHd6h77JDC4e3ohXj+mlJPyFLw+/oJ7RtLT4GP/rpyZZ2m33uInGYNpamp1Xz/nP3XGCxTw+QZGe9/I9+sN/7vuNZs3f5HIFx8ZOIZNvn9j35OZZFZ2xSG0NemLevkCKmXZETEbxr7rTsbzha59biGb9tWFjQx1S1/3Lh6CC7HQMBqM6eryStt5fG0JGOFB3egcWxzbBYt4b39sVxQVIBc+ivMys5LhZ9pswWBwnD9/qg6dGTfi1VRYbnmPCdOvk2Ii8tKRe6U6Q13U0BrP28Dlk6ys0BmO/+3io/90Q/zsddcfpViBTLu3ZfxcqSgpTv0aV5GevOXRGa9zkvzZpqq8FABxeYVlVVswrIFxTWUalUMZOsdx19h6yCB4C6RSoO73GZM6i1z63IoMDZq/YAgAIf+4LADCduwQAICmvLCGrmJ745Y3vfw211WQyKTs5npYH6TlZKfF4Amfg3Yv0Rg5OrpzU78y+mt+89rld8jObSqGMM5slJC7VkyZcPHwKGqMnTLe2XLqOHU9oqq+76bLr3dOHD846rdx3YuBChQx1oO70GtXR48WkFSKCHiO68/Glr5yatqyqFrJd3/H1Nsi+V4Kikmzs+Kqy4j500dxYT2pv//YxhN4oJCE9oIOIy8HxVAqlpCDn8bVTLuttV+x1Qy6wG6xX77BevYP2lcDNs/H4pbjIt2HPvaHuQLoB6k5fMLJa4O3pUlqQ21BXU5iT4eDogdivH99ZlJt5/F4wkhsGAIQ+vud5YH1Pztnc1ED7TOAm4tjYPXw+9KRhP/PKNZVlbS3NyH57KDRaTFphk8uVxM8fn9+79Ffd6QgGixOVkvsRH9PbhkxBSkpKXl6eJV0PNFJSPRqBDhWg7vQFk9kLvT1dPoUE1laVY7A4o5nzEXt2cry0ohpNdAAA36Pfd3oGJHHTRFdxOSvp965+Cuqjot88ZdhcPPyFr4b+RIEO5ZD7mVfeO9+kraX5VlgGbft2AAAahW5orO++IbLxcW1F2d6LXjRLW0tzQXaaqCRrVs+fOXPmzJkzLOka0ivg+zt9QURKTm2Mwdew4E9vAvWMp9N2vxMQlSgrzKupLAMAUCmU5/cuZSXHAQAa6xgruiOFhyODA5Cv+RkpwXQLDqYvWEWlUq86b2tubED2FH5x//KZXSti37/qGIzTrcAb71I7/Wc0a/5fr8VkzuLqitIrTluaGuqRFwV8LrkV52eNmTQVcfC55Bbkdb3TtngOQnTIs7snD7S1tiCb7Vw8sL6+pqqrjXQgEAQ43ukjJnMWXXHaSqVQ7Pf83pzTZu2uU9vtN0zXkZJXLS3IlZBXPnQtYJOl7qOLx4vzszi5eWme+iYz5NS0n/13ITI4gI0NX1tdvs39pst6WwqFAgDQNjC233X8wTnnFZMUJOWVayrLKooLptqtmGrL/N+z3fq9ZYV5oY/vhT6+R+QTrK+tJpPaNcdOWuV4EnHwuewmKa9isWhNx7ZLtjuVFuQ9uXXu5YOrXES+6opSQKVaLFrTca8bCIQeqDt9ZKKFTVVZMQqF1vv/tjAAAIOpc84Hfv7+6UNrS7OsiqaOgQkag3F58Dr5c4SYrAIvv9CCTY7IolA2PMcpv/DP716W5OcQuHn0TWYQ+QUXbHJU/f9WVnNXbZ9kaRsf+bamsoyLyKepP4m2VzpzQWMwW9yu2azd9SP+c3VZCZFfUEZFU0lLl+Zgar00Ny2p07ZYHNveCw9z05LSE2Lrqit4+AS0xxuLSg/PDAuEiUDd6SMEbp5Ol1lLKqgwCISKzk+71TYAACAASURBVFjaCkw13d+bRmCwOIOpc+g9GU4oKCZpZmPP7MA7R1xWSVy28z1nJOVVGDYmZUBWRZNZ+1JARggwvwP5C2g0Gs6bIMwFjndGKHfcHTl5iFb2m7UNjLv3nGW/qQ/nD/K6/jX8dWlBbl8DhAxnoO6MOMxtl5vbLh/oXpD6OwPdC2SIAudZEAhksIG6A4FABhuoOwNO6tcob0+Xvi3UgkCGJVB3BhyknDvUHQiEBtQdCAQy2EDdgUAggw18js5MivIyv0e9b2qoF5GS1Te2YMNzdOpWnJ+VHBtZW1nOJySioTdBhG7v87bWlm/hb8oK86hUqqiU3JjJU5GV690f6jOx719lJcdZLFxDFBCiGRvqal7cuySnpoPsElFRXEBbrqE93oj+teaBCAkyEoC6wzS8PV18Lp9gZ+fgFxYrLczj4RM4cvNZxwUE3RR+z89IObR8RlN9naSCCpVK/ZmRyiso7Hz7haSCSjeHGM7fq3I8VCrV29OVHU+Yu2o7zRgV/MTb03XP+Qfdl5fveUgQCANQd5jDt48h3p6u5rbL1zmdx2CwpQW5+xaanty25FJQPL1b94XfvS4cI7e3X3+XihRjLi/K37fQ9M7JAwev+ndziCGSXpXj0TOaLiAq8TbgHr3ufHzpy8MnMHaKZffl5XseEgTCANQd5vDG9zYGi1u5zx2DwQIARCRlNx2/XPIzu6W5kd6t+8Lv1WUlKDSaHU9AnIXEpc89i+Hg5AIAdHOIgV6VeUdjMGbzlvlccvsR90l19Hhk6+Gk2IiZSzdgcWzdl5fveUgQCANQd5hDdkqCiKQs/a9Ol64+Bo3uC79PW7jq4v61m2aMnjjDRnu8kYb+JG5efqRhN4f6ibnNcr+rHqH+dxHdiXjlT6VQzG3s/1pefuBCggx7oO4wh+bGegFRib+6dV/4fcqcxWJScq+8rr8LuB945yIWx2Y4bc4qx5M8/ILdHOpn5IJikmMmmUcEBaw6eArPwfnxpZ+Stp60kvpfy8sPXEiQYQ/UHeZA4OKpq6r4q9tfC7+r6Rqq6RpSyOSs5Liw5z6vvK7VVVU43X7e/SF6+lDmfdp8hy8fgj+9CVTXM0xPiN1w9NcA56/l5XsYEgTCANQd5iCvpvPp7fPy4p9CYr/q/ifGhOf++G4yZzG9WzeF3ylkcn5mKpFfkE9IFI3BKGnrKWnr1VVXfHzl39bSXJSX1ekhUnsbFsdG30UfyrzrTp4mICoREeRfUVLAjidMnGGL2LspL88nKNJVtP24i5CRAtQd5mBuuzw65Nlt173bT91mY8dXlhReOrSxqaFuxuK19G4CohLFeZk1lWW8AsJUCuXFgyu0wu9tbS2OS8yVtfT2XnyE5ImaGxvyM1J4+YUoVEpXhxhEp2/bh6IxGHMbe7+rJwuy0w2nzyH8f7/z6QtWRb1+ctV52+6z9zk4uahU6ssHV2667F7ndN549sKuQurfjYSMCKDuMIcxk6cu2OToc/nEknGSgqKSpQW5BC7ufRcfYbA4erfuC79vdrlydreD/QRZSXllAEBhdgaOjW2bxy08B2dXh5gVv9k8e98r7iX52ZtdrtCM3ZSXR2MwAx0SZBiDolKprI7hHwKFQu0+e2+Cxby+NS/Ky0yIfNfUUC8sIaVnPAMZCKR+jUqIfj/VbiVS0b0gK42h8Htawmek8LuB+eyGupq4jyGVpUUoFEpYQnrM5Km0B9XdHGIK22aPa2ttvRwcz2Cnf1+Zobw8s0Ly2LpEnBvj5+fX74uADA2g7vxBP3Vn6JKT+n37XINVB04ib04PMlB3RhpwXSgE1FaWn9+/RkBUYiD254JAOgLzOyOaqrJi51WzS/Jz0Bj04etPulrICoEwF6g7Ixp+YbHzgZ9ZHQVkxAHnWRAIZLCBugOBQAYbqDsQCGSwgfkdRgLveEYGP2F1FCOLtITP4hMNWB0FZPCAuvMHNjY2A3r+L1++EAgEdXX1Ae2FuZDJ5PDwcFVVVTExsQHqQnyigYEB1J0RBHxvcPBISkrS0dHx8vKaP38+q2PpHdbW1hkZGQkJCWg0nJhDmADUncHDysoqLy8vLi5uyP1609LSNDU1//vvvyVLlrA6FshwAOrOIBETE2NgYPDq1avp06ezOpa+sHLlyvfv3//48YOdHe4YAekvUHcGCRMTEyRRwupA+kh+fr6ysvLp06c3btzI6lggQx6oO4PBq1evLC0tIyMjDQ0NWR1L39m+fbuXl1dmZiY3NzerY4EMbaDuDDhUKlVXV1daWvrp06esjqVfVFRUKCgo7Nmz58CBA6yOBTK0GWIJzqGIt7d3QkKCs7MzqwPpL4KCgtu3bz958mRlZSWrY4EMbeB4Z2Bpb29XV1c3NDS8e/cuq2NhAg0NDQoKCsuXL3d3d2d1LJAhDBzvDCw3b97Mz88/cuQIqwNhDlxcXPv27btw4cLPnz8H4vwnTpxAoVBfvnwZiJND/h2g7gwgzc3Nrq6u69atk5eXZ3UsTGPjxo1iYmLHjx/v9Gh8fDyqa0pKSgY9Xsi/CFwnMYCcP3++urra0dGR1YEwEzY2toMHD65Zs2b79u2qqqqd+kyYMGHOnDkd7Tw8PAMfIGQIAHVnoKipqTl58uSOHTtERERYHQuTsbe3P336tJOTk7e3d6cOo0aN2rVr16DHBRkywHnWQOHu7k6lUrdv387qQJgPBoM5duyYr6/vt2/f+tA8KyvL3t5eWloaj8fLyso6ODgUFRV1dKNSqWfPntXR0SESidzc3KNGjfL09KQdLSsrW79+vZSUFBsbm6io6JIlS3Jzc/t3WZDBA453BoTi4uKLFy86Ozvz8fGxOpYBwdraety4cQcOHAgKCupVw+rqamNj49bW1sOHD8vKyiYnJx87duzbt2+xsbFY7B//G93c3A4cOLBly5YpU6ZQqdRXr15t3ry5qalpz549tbW1hoaGVVVVBw4c0NLSyszMdHFxGT9+fHx8vKioKLOvFTIAUCEDwPr168XFxRsbG1kdyADy4cMHAMDbt2/pjXFxcUjuuatWT5484efnv3HjBs2yb98+AMDXr1+pVKqbmxsAIDY2lkqlGhoaysvL07d1c3O7ePEilUo9fPgwACAkJIR2CHkEtnPnTmZfJWRAgLrDfLKzs9nY2Oh/WsMVc3PzsWPHUigUmgXRnU6RkZHp9CR37twBADx+/JhBd+bPn49CoU6dOlVVVcXQRE9PT0BAgMGooKCgra09AFcJYT5wnsV8Dh48KCsru3z5clYHMuC4ubnp6+sHBgbOnj2b3m5gYGBlZcXgTCQSkQ/e3t537txJTEysqqoikUgkEgkAQKFQGPzPnz9fWVm5a9euPXv2jB49eurUqcuWLUOeoOXn51dWVqJQKIYmvLy8A3CVEOYDdYfJJCYment7e3t7M2QrhiW6urrz5s3bt2+fpaUl/fWOGTMGmT115MyZMzt37jQzMzt79qyUlBQejw8ODu70VQMREZGQkJC0tLSXL1+GhoaeOXPG3d399u3b9vb2KBRKXFz81i3GvdgxGAyzLxEyMLB6wDXcmDFjhq6uLv3UY3iTlpaGxWLv3r2LfP1rfkdRUVFUVLS9vZ1mOXHiBADAz8+PYZ7FQHFxsaqqKj8/P5VKHTt2LIFAIJFIA3NNkAFnyP9NLi8vT05O7sZBSUlJQkJicIKJiIh49erVmzdvOk4BhivKysr29vaHDx+eP39+T0qCtbW1EYlE2uCoqqrqypUrHedZtbW1K1asmDt37tKlSxGLqKiovr7+w4cP29raLCwsPn/+7O3tvXjxYuRoWVnZxIkT9+/fv2IF3Gp5KMBq4esvfn5+3V8g8gRkcDAyMpo8efKgdfePUFBQwMHBcf78+Z6Md+zt7QEA+/btCw4O9vT0VFRURJZcrFy5Micnh368M23aNDwef/DgwWfPnj179uzQoUM4HM7GxoZKpVZXV8vJybGzsx85cuTFixc3b95UUVEhEolpaWmDe+mQPjLkdaeqqiqWDgUFBS4uLnpLWVnZ4ETy/PlzAEBUVNTgdPdPsXPnTiEhobq6ur/qTkVFxaJFiwQFBQkEwvjx44ODg8lkspWVFR6PNzc3p9edhoaGvXv3qqiocHJycnNza2pqurq6NjU1IecpKSlZu3atpKQkDocTERGxs7NLTk4exCuG9IvhVgdDU1OzoKCgpqaG3pifn5+dnT1hwoSWlpbU1FQNDY2ysrK8vDwkTYD4NDY2xsbGysrKysrK0hpmZWWVlpby8/OrqKh0P3WiUCi6urpycnIBAQEDdnH/LpWVlfLy8rt27Tp06BCrY4EMBVgtfExGQ0ODSCQyGJG/ouHh4YKCgsj7ZkjFvNTUVJpPYmIiAODIkSPI148fP9IvepSSkgoMDOym3/v372MwmKSkpIG5rCGAs7MzNzd3aWkpqwOBDAFGxPosHA4HADhw4MDixYsDAgI0NTW7909PT582bRoHB8eXL19aW1uTk5Pl5eWtra27eimuvb3dyclp2bJlGhoaA3MFQ4AdO3YQCAQPDw9WBwIZAowI3UFe65CQkDh37tzcuXP/uoTn9OnTTU1NPj4+urq6bGxs6urqyMLrs2fPdup//fr1nz9/jvApBhcXl6Oj46VLlwaoJBhkODHkn6P3nI5v0HZFeHi4gIBAYWFhYWEhzSghIREVFdXRubGx8fjx4xs2bJCTk2NesEOSdevWnT9//ujRozdu3GB1LJB/mhGkOz3f3ruioqKystLExITB3un+LefOnWtoaOjq9dwRBRsb2+HDhx0cHHbs2KGmpsbqcCD/LiNinoXQ/cKFtrY22mekLkxzB8rLyxla1dTUnD59eufOncOvuFffWLp0qaam5rCpJw0ZIEaQ7tCDaFBLSwvNkpGRQfusqqpaWFjY3t6Op6O8vLzj+7hubm4YDGbHjh2DGPs/DRqNdnJy8vf3j4mJobcPs9c1IP1khOoOsnLi06dPyNfGxkb6nPH8+fPb29vpS5fHxMTIyckxbN5SVFTk6enp6OgIywbTM2fOHAMDA/ose2ho6NixY+mTZZARzgjK79Aza9YsHh6eHTt2REVF4fH40NBQBweHmJgY5M/yypUrAwMDPTw8YmJi9PX1S0pK/P39tbS01q5dS38SpJzgunXrWHcd/ygnTpyYPHny27dvubm59+7di1QIS0tLG7SFcpB/nOGmO/r6+vQvHCNISkoaGRnR6r8giwy/fft27ty5rKwsIpF44cIFMzOzkJAQ5IeBRqOfPn3q6+v78uXLhIQEfn7+M2fOLFu2jJOTk3aGjIyM//777+rVqxwcHIN4fUODSZMmTZw40dbWtqamBpnSYrHY9PT0KVOmsDo0yD/BcFsnMWgsWLAgPj4+KSlpJNTZ6RUFBQVHjx69desWCoUik8mIkY2NbcOGDV29AAUZacDfTF/4/v27n5+fn58fFB16KioqXF1dL1261LGuRVtbW0pKCutCg/xbwPFOX7CwsKioqPj8+fPIqbPTE44ePdrNE3RJSUn4KjMEAf657jUfP34MDg4ODQ2FosPA4cOHiUTi9u3bO/1jVlRU1NLSgsfjWREa5N8Cjnd6zYQJEzg5Od+8ecPqQP5R7t27t2LFCmTZMcOh5ORkdXV1FsUF+YeA453e8ezZs+jo6OjoaFYH8u+ybNkyIpFoa2tLJpPpszwoFCotLQ3qDmTkvjfYNygUypEjR+bNmzdu3DhWx/JPM3v27NevX+PxePq8Ow6HS0tLY2lckH8FqDtdQqFQvn79Sm958OBBUlLS0aNHWRfUkMHExCQsLIyLi4smPRQKBeoOBAHqTpfk5+fr6+vb2Nggv5a2tjZnZ+fly5fDldY9RE9PLyoqSkBAAKm7RiKRkKKOEAjMK3fJ69evp0+fjsViKRTK8uXLZWRk3Nzc0tLSpKWlWR3aUCIvL8/ExKSgoKC9vZ2bm7uuro7VEUFYD8wrd0laWhoOh2tvbwcA3L9/v729XUtLCz4G7i0yMjLR0dGmpqbJycn19fUVFRVIlWvISAbOs7okPT2d9hlRnx8/fsjKyu7btw/+0e4VIiIikZGRBgYGiJqzOhwI64G60yXJycmI3NBob29vbm4+ffq0nJxcx825Id1AJBLfv38/d+5cejWHjFhgfqdLxMTESkpKOtoxGAwHB0dQUNDEiRNZEVeXFBQUbN++ndVRdAeFQqmpqeHn52d1IMMQOzs7W1tbVkfRU2B+p3MaGxtLS0s72rFYLA8Pz9u3b0eNGsWKuLqjtrbW39/fzFCPm4vA6li6hIgF5LoyVkcx3AiN/KKhoQF1Z8iTkZHRcSSIw+GEhYXfv3+vpKTEorj+jvve9WqKjBWIIMObMVYOrA6hd8D8TuekpaUxLPvE4XAyMjKfPn36l0UHAhkSQN3pHOQhOu0rFovV1NSMjo6WlJRkaVwQyHAA6k7npKWl0WrlYbFYAwODsLAw+OIJBMIUoO50TlJSEqI7GAzGwsLizZs3nW7aB4FA+gDUnc7JzMxESjesWLHiyZMn8DVlCISJQN3phOLi4qamJgDAnj17rl+/jsFgWB0RBDKsgM/ROwF5mOXh4bFr1y5WxwKBDEP+0J26ujpYeRsAEB4efuTIEQsLi+Tk5EHrVEpKCu472imnbj46fPZmhO/lMRoqg9ZpVn6hlsWynQ4Lju1YPWidjhz+0J3g4OD58+ezLph/Cycnp8HszsfHx87ObhA6ComInb123+HNK/atW8JwKDw2YfryHQc2LDuw0X4QIhkhNDQ1u16+F/A6rKS8UpCfd+aUCU5bVvDydPKY4lty2kS7DR3tL26enGIwZlCCHSQ6mWfpHHvHikhGNAmH4EaawxMKhTp33f5P8cmr7GbpqCml5+Rfefgk9nvqB6+LuA6br9XWNwIAls+z0FZVpLeryEsNbtQDTie6QxAfvNEsBDIMqG9sehz04e6ToMeXXPh5/5gsB7wOi/yaeHLfxo1LrRGLprL8qv0n7j8JXmk7k+E8tfUNAIC5U43MJ+oPYvgsAD7PgnTO2ds+BA3T/KLSoxf/U5qyQEB3hq7VyofPfu/eU15Vs+XoOaUpC4g602Qn26zc65pXWELfNvtn0Zaj5yQM5wjpWVqt3ltUWpFfVDp3vaOw/kzZyTabnM42tbQi/i6X7xE0TFMzc3e4XJSdbMM7aprenFUBr8M6DexncdkaR3d5YzuizjTpSfMWbnVKycgBABz3vEPQMH0X/Y3eOSY+haBheuTcre4DBgC8jfo6wW493+jpUhOtNxw+VVff2JO7FPUtae0BD3kj2+0uFyRFhTnw7AwOT96EseGwK2wtaZb5lqY83JyPgzu5OmS8w8PF2ZOuhzTweRakc7BYDABg+/ELAICj21eRyOSzt7xXO7orykiOG6VeV99osmhzVW393rWLNZTlsvMK3a8/NFq4KSbguoggP9J269FzkqLC5w5u/Zacdv6O3/rDp4rKKmZNmbBolvnTkPDbfi/EhPiRRBIbDgsAWHPAQ0ZC9OS+jdW1dadveS/deYyPyG0y/o+8RllltdHCTQ2NTfvWLdVSkc8tKHa9ct940eZIv6vLbSxPXHtwN+AVfSrEL+g9AGCZ9fTuA05Oz5m3wVFYgO/Cke2CfMTg8Jg1Bz26uTkl5ZUPA0PuBQRl5BZoqSg4b3NYOMucj9hJyub7jywVeRkCnR5hMGgdVcW4lIyOznUNiO78u+UEmAXUHUjnoAAKAECmUJ5edUMskqJClg67Q6O+jBulfuGuX/bPot/5TkM9fW21CXbrz/3n67Z7HdKWn5fnyrFdAADbGSYRX76HRMSe2LN+i70NAGDmFMPX4THhsQkHkL5QKACAAB/xwZnDSF8mBro6lvaX7gcw6M65/3xLyiufXTtBm4kYjNEcO3f1yesPr7vunTpp3PO3kTV19UjWlkKhPg7+MElfR0Fa4rjnnW4CvvTgcVs7yffisVHqSgAAC6PxW4+dT07P6XhbaurqV+13f/0xhotAsLOc8p+HY/dP2YrLKgx1tRmMwgJ8NXX1La1teHY2enttXQMA4FXYp1WO7unZ+RgsZvwojQMblulrD7etBOA8C9Idi62m0j4ryUoBAKpq6gAAweGf+Xl56EcWozWU5aXE30b93vlnttkk2md5aXEAwGyzX5XSOPDsYsKCVbV/lIudb2lK15ekoozEl8QfDPG8jfrKy8NtNkGPZtFUlpeTFAv7HA8AcLC1bGlt837xFjkU9jmutKLK3trirwF/iksW4udFRAdhjvkk0BmVNXWvPkSbTxyb+ubB+UNb//pov6WtjZ0Nx2BELK1tbQz22oZGAMCl+wFTxo9x37t+ubVF1NdEs6XbIr58776XIQcc70C6Q1zk91JYHBaD1AwEAPwsLq2qqSNomDL4E7m5aJ9FBH/XFWTH4ZC/8zQLGxuOQvmjwpGMhCj9VzFhweyfjL+3wtJySVEhhhIlEqJC0XFJAIDpk8dLiAjdDQhat2gOMsni4SLMmTr5rwGXVFRLiQl3deH0CPIRZ5lOCPrwSW3qkgUzTZfPm6GjptipJwIHO3trWzuDsaW1DQDA0WHxzXLrGVMMdA1Ga9Cesi+YaWa0cNPBMzc+eF3sppchB9SdEQeBAw8AqK6t73iopLySQTsYfuH0djFhgavHdjPY0Wg0vU/HVt0ExlBojUqldurf1s74M6ZSqcjMDoNB21tPd71yPzEtS1VB5umbj7YzpiC5lZ4ETA+ZRO7UTuTm8rlwtKyy+uGzN/cCgq89eqajprhi3oz5M03p7xsNMWEB5K7SU1xWKcBHRLJa9Ggoy2koy9FbRqkraakoxCUPt6LULNad8ij/tpoSiRmbmOgJ6R55KXEUChWf2kle83NCKgBAVeHvG4RJi4ukZORMMdDFYJg2VS8qraD/WlJeST8+QpASE87KKySTKfT95heVSooJIZ+X21i6X3/o+/KdwRjNmrr65fNm9CRgIX4igzrkFnZSWpuGsADf9pXzt6+cHx2XdPdx0IHT1/edvDrHfNLlo7sYUjZjNFSevAlvbG7h5Pg1umlta//+I9NQV6vjaX9k5zc2Netq/jF363SmNtRhcX6nPMqv8JUncz17SHNxRsm7O4WvPCs/B5JbGpjo/I8jJixgaqD7MTaBlgdB+BibcMM7UFZS1GS87l9PMm3S2KaWVuRpEUJ5VY32jGX3ngT3OTD6B+c5BcVZ+UXjR2l07LehqfnVh2iaJfZ76s/iMrMJv9LMkqJC5hPH+gd/8Hn5VkNZjvYb7j5gPS3V8qqaeLpnTN4vQnsSs8FozavHd2eH+Z1x3Jz9s7ipuYXBwXaGSTuJdNPnOc3yn//LxuaWBTPNOp5ti/NZ82XbcgqKaZbouKQfWbmTx/5zxbz7CYvHO8obrlNJjMPmfnr2hDzfY0VvrqFxeCwnsa2mlI1HSHXrXU4ZxucOfXAeElw+tmvK4s0r97p6PXujq6WCQaMTfmS9+hDNy8P18MyRngxhNi2b9zDwzfpDJ7PyCnQ1VUoqqs/951NWVWMwWrPPUaXn5K87eHKW6YT6xmbXy3fRaNRmexsGny32tl6BIasdTzhusFdXlEnP+ely+Z4AH3HPmsU0n1V2M202HvxZXOq+5/eag+4DXrtwts/Lt9YbDuxevZDIzfXyfdTP4s6Lz9fVN77++LmjnZPAsXGJdceK+pYmhuYT9Q+euZ5bUDxKXSkxLfv6o2eT9HWQJDqJTObRnjpaQznS9woA4MiWlbNW75myeMsqu5niIoI/svJv+T7n4iQc276qz3f134TFuoMlEJnu+VcqYp4Wvb4qYrxUdoEzGsfeXJyRcmZR2qXVo10jUFjGAW2vnIcKkqJCsU9vnr3t8+J9dPS9xwAASVHhrcttty63pU8GdwORm+uDl+cxzzt3Hgd5XPfiI3JP0td5dN5ZSbbvdWDPHtrqH/R+w+HTtfUNSnJSj845dRzv8PPyvPe6ePTCf2dv+1RW1/Lz8kyfPO7gpuWSokI0n2mTxkmICJVXVS+c9XtM0X3AY3XUH51zPuZ5Z//Jq1ycBEtjg4dnj6iYLWztkEsqKCmz3328q0sonvSsY5bH+7zziasPfF6+ve33UkSQb9OyeQc22qPRnaSuJuhqhdw7d/KG123/lxVVtQJ8xDlTJ+9fv1RBWqKX9/Jf54/9s3x9fefPn29wq5C5fZBbGqrj37RWFbILSPKPnt5WU1oe/VhwrBWHmBJ91qY8+jG5uV50yvLm4oya5HBAoRCk1Ihqv568MjG/k+Rq1VKer3vqCwrzS3bLo/0zb25VXndVQH9Wf5z7TLSDRP/XhSYnJ2tqan59dmvI7SfB3BXnzS2tKuaLzAx1b7s7MiO6IcAYK4f5S+wHeSVzfxjw8U5LeV6y+7y2mhK8sBwA4OeTkyImywoCz3DJjeYQUyqP8mvITUDUpDL2edPPFBQWl+t1iF1Ipr2ugtRQJTjeWmn1RSS/Q/Okh9LWXBh0uavexUxXYLn4//Rvqc+OExw7m6YjAABeTRMAQG1qBIOU9MoZ8o9w4a5/ZXXt5mWMczTIv8OA606ez9G26mLlDdcFdC0BAKVhD3K9nQAAqA7jTBQa3V5fUR7lP8YjBscjRKWQUs8srvgUIGW1Ay8i18XpAYXUVh7p29VRIQMbBt1pKc8FVApe5I8RAY5bAIPnainNZmjeK2cIa2lqaQ2J+PwpLtnz/uMVNpajNZRZHRGkSwZWd6ik9urEt9yKeojoAABEjJZUfHpSl/6pU39Ke6uMzQEcjxAAAIXGCujNrE2NaC7J6kZ3sATiGI+YnodEbm4AAGDwjEtpMBxcpKa6/jhDWEt1bd2qfSewWOy6RXNcdq5ldTiQ7hhY3WmtLKCS2glS6vRGXk2jrnQHAMAp8/u9BgyBBxEjpgbVxX7wVCro5C21XjlD+siuVQt3rVrYz5NIiAiVf3nJpIggA8vAvr9Dbm0ELmIdsQAAIABJREFUAGDY/1jXj+UW6MofhcagcYyVBJgL8lyM3Mw4WiE113d8ZNYrZwgE0kMGdryDiAil7Y+XqUiNNUzsord5ZXZhWRQa01L6x1LjtuoSSmsTh6gCQ/NeOUMgkB4ysLrDLiAJUOjm4j9eya9N+cjELnqbV0Zj2biVxtamRlBIbWjsr1faqxNCAABEDSOG5r1yhvQEbm1zCyMD34tHmegJGXIM8HiHjYNHeVxdWnTtjyiiqiHy8ktDTjwTu+htXhkAID51zY+LK3IeHpBbdByNY2/MS/z59CSHmBKfjhny4L88yp9bUY9Xw+ivzpDe4mA3S1Opy6cEffPsCR9i4k5cuR+XkkGhUDRV5HevXjTD2OCvrZLSsyfYrufmIhREPqEZn4aEX7jjn5aTT6UCJVnJtQtnL5xl1v2SVwgDA/4cXXb+keSTtqmnF3CIKwMKBQAgabklz99loPvtBr5RUyWtdhQ8P1fx6QmWk9hWXcIuKK2y8SYKjQEAtJbnFwSeEZ+2FtGd7p0hveXcwS1M9/wrIRGx1hscVeRlDm9egcNiHjx7Y7vp0MOzh+eYT+6mVTuJtNrRvZ1Eoje6Xb1/7OKdOeaTt66wRQHUkzfhq/afSEzLctu9jlnRjgQGXHc4ZbRGu0ZUxb8mNVTjReT4dMzLI3wAACgMDgAgZGhLVP9VYElg7GxO6T8W6RIkVCStdhDElRg8+4/U7J1C4+fWJIeRWxrxInJ8WqZotl/LhdmFpCWtdnAr6vXEGTIk2HPispiQwPuHF7g5CQAA+3kzDOat2XPi8qwpE7tZjOZx3SunoNhk/JiEH5mIpbWt/fSNR1oqCg/PHkYGOFZmE7PyCy8/eOK4YRlyckhPGHDdobS3kpvrRCb/XrbXXJIFAGDjEwMACBn+fqlUcOxshrYECVWChCrymd6TKeBF5EVF5DuxC8lIzd7ZQ2dIRxqamg+eufH0TXhdQ6O2quKx7atevo+6cNe/5FMgDzcnfdZGUHeG3UzTNfOt9rhf/paUxkngmDx21Ml9G0SFBJiY30nNzE3Lyd+3bglNF9jZcMusLRxPXYtJSDEc0/lC1qT0bI9rD087bgqP/Z0WqK1vaGpp1VZVoJ9Vaasqfkn8UV5VA3Wn5wz8+8p+x0ve3lbZeJN/jAUAoKkgtSzCm0NcGT4PGq6scfR4GhK+ePbU2WYTfxaXLdt1XE5SDCkwyOCJxWLSs/MXbXdaaTtzw5K5MfEp5+/41dY3Bl4/0c35n7wJX7zdudNDwgJ8ueH+DMaEH1kAgNHqf7y+PEZTBQAQn5Leqe6QyOTVju4GozUc7GbS644QP68gP29qZh69c2buTx4ugqSocMfzQLpiwHVHympHfWZs2qVVeBF5NAbXXJKF5eZXWnVhoPuFsIT8otKnIeHTJo+74boXsagryVmsYBw//gKFivqW9MHr4lgddQDAHPPJsd9Tw2LiSGQyFtNl+kxXU+Way55OD3Gwd/LyV3FZBQBARPCPEmJIRbHiMsZKgAge170ycn7GPrvFkC1GoVAuO9esO3hy+/ELy+ZOx2Ixj4M/hMcmnDu4pWPxQEg3DPjNwnLxaR96VZsa0VSYRmlvwQvL8Wmbotk4BrpfCEuI/Z4KALCke1RkNHaUmoJMalZep/7KclKI6CAoyUpFfUuqb2jqdE8YBGlxkaVzpvU8pJa2NgAAO9sfZQCRCn4tHSqrIzMs96sPXHetRYZpDCydM626tv7g6evXHj1DKqs6rl+6eoFVz+OBDFb9HRSaqD6ZqN7dswPI8KC0oqpjUXTVrnVHXPgPTyxd6XhmgQyCGDZvQCqrEzpUVkdmWHpaqusXz+30bFuPnb8XEOS01cHUUBeNRn2MTXA6f/t7WrbPBWf4KL3nwMEhhJkg1ZzQf/4Cu6qd/tdK70xBTFgAAFBSXkVvRGZYHTeNOHnDKyuvMPrxtU7rcsV+T73hHei4fukOh/mIRUtFgUSm7PO48jo8ZrrR+IG8jmHFkNedturi0nAvXg0j+iffEFaB7A5eWllNb0zLzmdiF73NKyO1xL4mpVn9f/cuAMDnhBQAwJgOtTKevvnY0NSsZbGMwU7QMDUYrYnM71QV/qiLoiwrCQBIy/kJdafnDHndaa0uLgg8g8Fzslx3yK2NNYkfWivyMQQeTikNLrnhVou7JyBVb95Ff0V2ywMAfIpPTkpnZq2i3uaVlWQlddQUHwa+2blqIbIFcENT853HrxRlJPS0VBmcPfZtYNgZ/fwd38S07Jtu+/h5eZpbWwEAkV+/21gY0xw+xScjWScmXd+IYMjrzj9C9fd3Wbe3tddX4rgFSE21VDKJT8dMae1lhrX4wx5VeekJulp+r94L8vFOmzQ2v6j0zG3vCbpakV8TmdVFb/PKAIBT+zfNWLnLZPFmB1tLNBp92+9lYWn5k6tuyCzP+cJt92sPH192sTAab9Rh5wa/oHc/svNnmU4AAJDJlPGjNG74BFIBmDJ+DBaLifqW6HnvsbaqoqWJIbMucCQAdYcJtFUXp19dixeS1nQMxAvLUknteX7HikNvFTw7LWN3mNXRDTZe55x2uXk+DHxzLyBIV1Pl/unDV72eRn5NZGHadYKuVvCd08cu3jly7hby8s6Lmyc7SsxfwWDQz2963PAO9H7x1vtFaEtLq7S4yIYl1nvXLobP0XtF/24WlVqX/qmpKJ3c0sBGFOHVMsHR1dYhNdXWJL5vqyrCcHBzSmtyyY9G7EhGRkB/JjufeNW3oLbaMg4xRT4dcxQa01pVWB0fQiW1cymM4Vb4tYtTa0V+WaQf/xgLvJA0Uh8exyPEP2oqw0JzGuSWhprE9y3leWgcO5fcKG5F/R4G3GdqksOo7W2y84/ghWUBACgsTmb+4bKP3jXJYTL9P/tQQ4if9+7Jg/SWsspqNhwWeXRd/z2EZi/5FMjQ9uKR7RePbEc+03v2H4PRmq9un+r00JEtK49sWdlVw3unDtF/5eTAb1tht21FvyrwQ/quO+TWxpRT8xty4jlEFTHshObSbGp7q+LqiwJ6MwEAVXHBGTc2owAKLyrfXl/ZVlUkMNZKec1lgEK111UUBJ5Bs+HLwh5SqVRySwOpoUpw3FzhifPTLq1i4xVpqy4htzbK2B0Sn7YOANBWU1oQeAZQyOXRj6lUCgqNba3Iz+PkVd/tx/lnJUMAQO2PqPQrayltzQQJFVJTXYu3E1F9ssqmmxh2zu4Dpqf6+7uGnLhOr5ogoSqgZ8lgFJ64QHjiAnoLCo1Fs3OgMGxg5OF0/lZbO8l1169Ko7X1DTEJKbDaMYSevutO2Ufvhuw4tR1eyLptSltzmqdD9v19/KOmUQE189Y2Nl5RrYMvsQQeZLVEUfCVSr2ZArqWAIUGABS98lRae5lX04RKJqWcXlDx+Wnjz2StQ684RBVIDdXxh6cUBV9BdAegMQCAwuDLiivPCY6bAwCoSfrw4/yynAeOmvuf0odEaqhKv7SKjV9MbccjNqIwskdF+tV1PwPcZRce7SZghp2wGnK+lUf6dXrVfDrmHXWnI1XfgtrrKkSMl/b59g5dmlvaLt7zr6iqsTKbWFvf6Hn/cV194+7Vi1gdF+Qfou+6015bBgDAsP9aC4dm41DecB2gUCgsjtxUK2N7EC8kjYgOAEBogm1R8JXG3ERagXdupXHIhjAoDJZ/1LS6tGjBsbORRVtYLj6i6oSKmCfklgYM/tcuaNwKeojoAAB4NY15NY2qv78jNfzxvLYi5impqVZx9UVEdAAAAvqziGEPyiJ8ZOYf6SZghkuTmr1LavauPtyTqm+vGrLjmwp/1KZ8FDFaImHJtEoOQwi33euEBfkePn39+HUYGoXSUVMMuOwCnzFD6Om77ggaWJe8u5NyeqGA3kyi+iSi+iTarx1LIIoYLWkuySqP9m+vq6CS2pDapuSWelpz2kJzWv12gsTvoTgiWFTS73dMaekeBA4J1erv71rK/3gLtiEvEQBQmxxOX1qM0tpEbmloLc/vJmBmUf39XXm0P5XUziU/miCpiur6fblhDBqN2umwYKfDgh74QkYofdcdgriKjnNIccjNqrjX5VF+AAAe5fGyC5w4ZbQobS0Z1zdUxb1m4xPlEFVAsxGoFDJDczT77yVayJOOPxZtdXj2geH4Y8EOho2AzJVQdHXgKS2NAIC6jM+oP1cV/o+9s4yLqmnD+GwHGyws3Q0CSqmgGIBdCA+Khd0tduNjB8aj2IEtiC2KrYhigYiIdHc3bL8fju+6LLASiys4/58fODOzc+6DcHHOfWaum6JvLeBzJQTc6m+CGAZT9xlM3cepKCoMv5F21afsW6jponPSmhwC6TS06X0WgamtO/5f3fH/1uWnlkQ9yg4+/P3AROudb/JfXiz5/EjbbbXG8EWIgtQVpn9e06YFDtyactFDpFIFmlBP0RBtMp5ztKl6W00FLCZqLc0rc2sqOOUFJDVD5BBHY6oPnlObE18QFlBXmE5U+gtfakEgkmj9g0BdYXptTgLyNVFFT33wXG2PdZzK4qq0L1UZXwEAKs5ThLct5d/D2hhoTcY30cPanASAQpPqe3Ehdy6VyRGijWUxL6szYyUHLHauqtTIwjeBjf6riA9vGFt6gE/Uhn41OfH1WtEYAACvrrrheIgU2Xf6KtncJfJbfDPGQv4UWn+/k3J+VW1esvmqIGTRChDwq1I+AwDw8qoEhhoAoCol8v+lxN8UhF4BKFRbamyWx70p/fIUcVOvSHhXFvOKbuYodp/C7OGaeWt35h1fqoEtcstTmfgh4ehs+W4uxnOOSQhY7FwtzSszHTwK3gQmn1tuPOcogakNACiNelz07iaeoUbWMGn1JUM6CpHf4h3Hzm/Yfv/0XmcHG1lE9KfTet3Rm7g9dv/4z+v6kNQMMQQyqyiTW1Ou5bqcpGao6jy1ICwg7r+pctoW3OoyPofVxftKwon5JZ/uJ3DZ6oNbU0NWpd+klItrMIFkNJ5YkxWPpcjrTRB3wMRSGMbzTyUcnxu1sT9JzUjA59XmJFD0rfUmbJMccKu/CQh00156E7alB22PXO2AoyryWDV8di1RWcdw1hFo//43UF5ZDQCY+s/Qrqb1fpZM9LVkF9QfTet1h6RmaLMrvOxbaF1BCp/Dwsur0M364OVVkDSK9Y7XJVFPOBWFBEVNhtVADEHOdMn54o/30HgSnqGmOcqbZtxTOBVZy1xzlDdR+WdSRt7SBUtREM00E5jaVltflEQ9Zpdkq7pMV7AZilTsJDDUNEd5Uw1+bAqlmzna7H73Y70yniinZU4ztkce9yQE3HZUnacye7iWfw9jFWeh8SSisi69Sx8oOn8J5ZVVAAC3Qf0GOnZvxnBI2/LKKAyW0dUZAOdG5qUoKDt6irYQFDR+rAMEQMw4XU7bXE7bXLSF0dWZ0VVsWgGGRFVy+EfsRHiGmthsGCJFsfvIlgbcdrAURlPn7ZQIBIIjF29cvPUoIyePzxfoaalP8xg2d8KPNVYpmTk7j1189f5zYUmZClPByd5m06JpiBXOgbMB631PxoRcPHgu8EbISzab42BtcXzbSi6Pt2TroTefoskk4gjn3nvWzCcTCQCA7UcvbPc7H3HnzKmAezcfvSqrqDTU1Vo3z8t9cCOlEwtLyrYe8X/48l1BcSmDTnV2sNm8eLqOhuovA24LyP0OjfJ37QFuC3AzG6SV7D111efQmfmT3Pv3tBIIQEjoe+/th2tqWd4zPMsqKgdP8WZxOOvmeeloqMYmpSE188ICj2IxGMRUcMm/BzVVlQ9uWBL5Lf6Q//V5m/blFBSNdO49YeTA209Cz16/r6aksH7BFAAAsuVy9vo9Ohqqe9csKC2v8D1zzWv5Vgad6mRfL3tSUVntNGFRSXnl6jkTzY31UtKzd5+83G/8wvc3T6owFSQELHZptq4zvielNXrV/21aOtNT/K9LRRWiO7CeRHOBugNpJSGv3ulpqu1buwA5HOnSW09LjUwiAABef4yuqavb7j17qscwAMDQfvblFVX7Tl+NiU+x6mKEAijEIezY1hUAgDHDnMI+RT8J+7hr1bzFUzwAACOcez0KfR/68ct6AITLuxQZ9Ev7f2zud3Kw7TZ8it/Fm2K689/56ymZOT+zub3sunc16z123sFzgTtXzpUQsBhblkwvrahq9Kp7dhPfEggAKK+oAgA8ePVu5rrdCSkZGCzG3sp8/fzJ3buate173GnpALojlsGB/CFoqim9/xJ7yP/6FPch8jQqAGDFzPFI10iX3ohhjRBjfW0AQHpOnlUXI6TFdcDPKoz62uoRMfGu//cDJBEJasrMkvJ6bz89h7sIvzbS1TTU0fj0NU4spJDQDwryNNFXSNbmxvpa6s/eRkgOWIwRzr0bbW+K8qpqAIDfxZsTRw2cMWZ4Qmrm2evBA7yWBp/Z62jXtUVT/SV0AN1pmMGB/AnsW7uwpKxi7d7j631PdDMzGtDLboLrQBM9baT3+oMXF28/+paYUlpeyeXyuDweAIDPFwg/rsL8aWNCwOGEtWUQ8Hic6GAAAJKjEaKmzEzJjBYLKTM3v6SsgmzuItZOp1J+GXBbmOo+zNnB1sHaHJEzAMC4EQP6jV+4Yf+pl1cOt33+zkcH0B3In4myIuP+6b0JqZkhoe+fh0f8d/6675mrx7etmuQ66L/zQWv2HHN2sNmzer6mqjKRgH8c9gHx3BLS0AZMsjGYQCAQO2x0BjVlxeNbV4q1I8byEgJu1TfgJ+bGeubG9ZbIW3UxsjQx+PwtoY0zd1ag7kDahLGelrGe1uIpHvlFJUOmLl+9++gk10Gnrt1VYSrcPrFLWH7v6dtPbTxRTn6R6GFeYbHo/RGCtrpKbGKqs4OthKrnjQYsNqaleeW4lIzqmlpbi3prROvYbEKDEqkQhN+qO98PTKxI/NDzaOLvPGlDEk8tKnp/m2HpBAAwmLYfR2MCAGpzE8u/v+HVVRGZ2vJdnYX+G82hOv1rVXo0r7aSoKglb94XWUWdcnENuySnKi1awOd2PxTTnhckAyoqq2dv2DPKxXHCqIFIiwpTwdbS5Nr9p2wOl83h0KlyQtEpLa88de1uGwtj3Xz0aswwJ+Tr1Kzc5Iyc0QP7iI0Z3KfHp69x1x++GDfix6NWYUmZy6TFK2ZNGD2gj4SAxVxKW5pXXrzlwKevcRF3zwpL/YV/jolLThvSF7p/NM5fer+DxmBNl1wQHqYHbs15fAKNI2Ll6OyyfDxNyXTJeTmdX2cE+Vx24on5JZEP0TgCmkDmVpViKQz9ybsVbYfre+0CAMQfmV6R+KGdr0YG0KhyNbWshT77k9KzkL/zkTEJ1x+8cB3QB4/D9uthdenO400HTvft0S05I+fIhRvTPIZv+e/s0zefGpZwaCYJqRlzN+wd6dK7srp2x9HzaDRq0RQPsTELJ/9z+e7jeRv3Jqdn2VqY5BWVHjwXUFBS5mBtITlgsXlamlfevHj6yFmrnCcunjl2hLoKMy4540zgPYoceeuyma272E7PX6o7ohS9v53z6LhKfy/dcVvQOEJtbmLs/gnxfrOsd4Q1tAQTI+P6tpLIhzpjN6kNnIlCY6ozYr4f9Eo6vZhmbC8V5+Y/mauHfHYdu3jz0avD54PQaLSWusqGhVMWev0DANi1ah6Hyzt348HRSzctTAwObFjk7GD36WtcQPCzrLyCwX16NmN6cQ5sXBL08MX8Tb7llVVGelpXD/rYW5mLjaFTKS+vHNl6xN//xsM9J68w6NQ+3btdPbTFSFdTcsBtpLet5ZMLB/eeunI2KLiopFyRQR89qO/aeV4G2hptn7xT0mLdyXt+js+qVR9abxdcVcrn0q/PFbuPIKubIDvCazK+8eqqCIqa8pZOYrs3EQrCrnGry4QrmAEAValRpdHPlHuPJTB/7GqpzoipTPzAY1XjGeoMS6emjNzbSN6zsziakt6EbSgMFgBAUjPSdl+ddHpJyeeQX64/Lv3ylGpoJ9xxJqdtoTZgRsaNnZWJ7xVshrVHtH8OciTiVu9ZW71nNexSkKed27NOrPH6ka3CrxdOrvfbfnLH6pM7Vou2RNypl4QGAFDIxP82Lf1v01Kx9hUzx4u+DldWZAid4ZsfcNuxtTC5dqjxaoKQhrRYd2pzk/Oen5O3dCJr/lwTlXX/UFnMC1XnqXx2XdzhqeWxr4nKOhgitTY3EY0nmS46RzXqITZPwetrdQVp9XXnc9bd/XTTXgSmloDLSTq7tOj9bQJTG0dTrM1NSuHzDGccFNqkCuGza7MfHm0qWjWXaZLVis+uq0z5zOzhiogOwv+30Yf9Unesd70F9d+zYEk0AMDf6egOgTSTFuuOUi+PvOfnij7c1f6/7nBrysu+vWR0HYCjKmY/OFwe+1pv0g5VpykAAFZJdrTPoJSLa7v9+6xFZ8m6d6Do/W29idtVnacip4g7NCXp9BKqvi2eUW8dB5/LLnwT2GS0Dh6SdaeuMA0I+ESVepVncVRFDJFSl9+8Kpcib3P5HFbB20AsmSbz4qUQyJ9Mi3WHomdFUjMs/nhX2/3HjXHxp/sCLkep91gAAEXfVmfsRmFRF4KCBt2sd3HEQz67Do0nNvccAkHey4sU3W6I6CCGzToe62J2uRW9v6U+ZF69CyDTbfa8b+lVCOHVVgEAMETxJ0EMidJ8tyBudVnu0zOcisLS6GdoLM5kkT9WTr7VIUEgnZ7W5JWVHP7JuLm7Ov0r4u9X9O4WjqrI6OqCONFQ9W0q4sPrCtJ4dZUCPr+uMAMI+Hx2TfN1h1WSza0qETBUM+/4ChsRj/fq+q6D0kDQRLOgocdzU3BrynMeHeezazF4MqPnaKwcXZoB/vWIZXAgnYDW6A7T4Z+MW3uKPt6V07Fkl+VXJLxXGzADyY+URj9LOr2YV1clp2WOpSqisTikkkSL4NVVAQDY5YVlMS9E2yn61ji6UisClgBi4sOrFb+14dZWktSMmjkJUUmn59FEAZdTlfE1/ZpP9JbBFmtuC+ujQiAQMVqjOwQFDZqxffHHezoe64s/3AECPvKQxeeyk04twpBp3Xye4BXUkcFJp5cUFmU2Z1qhFTGSmqWbORrNPvLLT7Uxr0xQ1kWhMXX5qaKN7NI8PqsGKeYlAQGfyykrQGHxyMpDFBZH1bcxmnsscmWPvOf+hlB3IJAmaOX6HaVeY5LPeVenfy36eFdO2xypF8wqzODWlCv18hCKjoDHrUhsPPmCxuF5dVWijzPV6T+2+eEV1HFUxarUSCDgI8VFkWeZ8m+h8pZOYiuJ25hXRmPxVKMe5d/D+Fw2GvvjJVTplycAALp5I7ZSorDL8iNX9lC0G24876SwEYXCCG/ZIGIwrIc4OdjePLpdtmEYOnsiuy601VXinlxpj1PkF5Xo9RuDfD16YN8rBze3x1k6Lq3UHUW74amX1+W/ulSVGqU7zgdpxMurABQK2RmAQmN5rOqU86tRGBxS6UXs95+oalD+/U3plycMq0EAgOJPweVxP0s1qPSblHX/UOYdXy3XFQCF4rPrUi+tK/pwt9u/T5ElQj8voG15ZQCA+qDZcYenpV5erzdhGxpHqE7/mnl7L0nNCPGQZ5VkF7y+RtGzbuB/CAgKGjQTh+KIB/kvLyr3nYBCYziVxamX1wMA5C2d2hISpL3padXFd91CAu7HX5qbj14duXAjLiUDMdlY4OU+ZqiT5H2qQp69jfA9ffVrQgqHy9XXUp/lOXKy21BFBj0s8CgAYMhUaKXQCK3UHQyRomA9JD/0CgqNYfZ0+9FIoqoNmJn75FTkKns8Q7U2O0G53wQdj3XxfjMTjs1WGzhbdAZV56nFH+7GHZlOUjVA6hFru69OubBawOcDADRGLq3NT8m6dzD/1SWComZdfiqPXWMwebeY6EgFhtUgzVHeWfcOFr27hZWjs0vzCExtkwWnEXdkdnF21t39qs7TGuoOAMB47rG4w9NSLq5Ju7oJQ6ZzKotQKLSK02TlPjAP+kdDlZOzMf/xs7Tv9NVNB0472nVdN8+Lw+UGBD+funJ7Ymom4nYomav3ns5Ys9PMUNd7uicWi7kR8mrB5v3fEtP2rV2AzI9ueofq30zr90moD11AVNEnKKiLbgjQHeejYD24Ki0ahcHQjO3ltC0AAMbzT7IK0klqhkx7d6GdO1ndxHrH69LoZ+yyfIKipoLVIHZZvuYob4KCOvL4Yzz3ePWwRZWJ73msary8qrylc/vtPNByXa5k71b27RWvrpqoosewdBG+fcMratDNeotWNxUFR1OyXH+/MulTTXYct6acwFCjGtohpWwgHYLK6pptR/z7du/28JwvcoMzd8JoqxFTD54LXDVnIg4r6ReEx+Ov3OVnqKPxOuAoYgU9d8Joe/fZp67d3bJ0hhyp2QtH/j5arztyWl2QtI4YNBMHmomDaItwkTFFz6reuSkKSr3GCA+JKnq/9HtvP4gq+qr1qwAiEBQ00HiSZLdDqqHd37NQkGk7zNrc+MmFg6KNzhMXxySkpIYGyZGIZ6/fP3M9ODkjGwBgpKO5aIrH2GHit4pcHo/WdZDH0P4X9m0UNk5YuuX2k9Cabz+WmN5+EnrI/3pMfApfIDDW05o9btQ0D/HV6m2nuqZ246JpvWwshE9VJCKht63ltfvPSsoqRM3JGlJZXb3Ay93cUA8RHQAADou1t7b4npxeWFwmpylelw0iBO4L/QXcmnKqoZ2CVVutoToNowY4BgQ/z8kvUldhIi0ZOfnvv8ROch0kRyIitSLcB/dbPXsil8c7E3h/6srtOCzWbVDfFp3l+JXb3tsPD+1nf3rXGgwafetx6ILN+7PzCjcsnCo28tbj0InLGt8YpazISAsNknwiVSXF5TPGiTUmpWfTKGQlBXF/HzHkadS1c73EGhNSM6hyZKRyBqQp/lLd4fO4cYcmi/rvNAWWTNcYtqgVpxD677QhzD+RCa6Drt1/dvPRK+HezsDxZXY5AAAgAElEQVQHzwUCwaTRgwEA95+/NdDWuLBvIxqNAgAMdOyu1dvt8p3HLdKdyuqaTQdO97KxCPLbhtyGjHDuXVZR5Xvm2vxJ7gryNNHBthYmJ7avanQeEqERz3YJ8Hj8jNz8g+cCI2Li969fhFxCi7hwK+RNxNf18ydDxy/J/I26o2g79EepYgBQ2PbawEnWMMHRlOR0u2HwjeeGOihOPW3UlBWDQl4KdScg+JmupipiYP7s0iHRwVQ5spoyMz0nr0WnePMpuqqm1qP+GyWPoU4PX70L+xQ96v/27wja6ipeowe37ZoAAMA/6MH8zb6IkfP1I1uH9XdoxofqcfXe08VbDgzr77CmwU0QRIy/UXcUbIb9BpMKVedp7X0KmYDBoD2Huxw8F5iZW6Clpvw9Ke1bQur6BVMQjcgtKN53+uqrD1FZeQV1dSwuj8fnC8wMdZsx8U8ycwsAAN7bD3tvFzdFR7rag+5dzbZ5zy4qLXv2NmLisi2bFk1bNl28rlZTCASCfw+f233i8mS3IYd9lklwWYUg/I26A2kjE0cNQkp9Lp02NiD4GQqFmjhqEGJ+2nfcgoqqau8Z43p0M5OnUrBYzD/z1zdzWqFzOyJh3jM8+/UQX/NtpNteFcdFvdnnrN+z3vekvbW5g7XFLz/I5nAnr9ga/OLt7tXzFk0Wt0CENArUHUiLMTfWszQxQHTn+oMXfey66mqqIoXrsvMLD2xYPGe8KzKSw+WWV1ZTGxTwRaPQAAAut57dcnZ+IfKFtroKkrVtTrnxNuaVX77/fPFWyLyJbqIGrK4D+1y8/ehjdNwvdYfD5U5ctuV5eMQNv+2D+oibTEGa4nfozh9i5w6RIhNdB63de/zhq3epWblr509GGtkcDgBAgf4z73v00q3K6hpBAzt3NBpFo8oh79oRvielfY79UfWll60lhUy6cufx0mljhebwPofOvI2MuXV8p9i6mDbmlclEwtV7T2vr2KJbGV6+/wwA0FCR9MIBYd/pqyGh724e3dEciYQIgfc7kNbgOdx5ve+JlTv9KGSS8F1VLxtLLAaz4+gFLBaDw2LuP3+bnp03oJddWET0hy+xYlmeAb3sbj56tWzbf/16WmXkFJy8eseppw1S7oZCJvksmb5ip9/gKd4zxo5g0KlPwj6euHpnxtgRDRfjtTGv3KNbl/EjB1y993TY9BVD+9tjMZjXH6PvPH1tbqyHuLvvOn7p38PnLh/Y3PCVXHp23t6TV4z1tJMzspOvZIt2ufSyQ0ydIY0CdQfSGlSYCs4Otk/CPnqNHizUAkMdjfP7NmzzOz9jzU55GtV1gON1v23vor5FxyePmr368gEf0RkObliMx2FvPQ69cCvE0sTg9K41tx+HPn37icXmEPC4+ZPcVZUUj1y4seTfgwKBQE9bffeqeQu83NvjWo5vW2lvZX7+ZsiOoxf5fL6Wusq6eV6LJnuIvgvHoBtJFccmpdWx2N+T0hrmv8/sWgt1RwJS1p3KpI9VKZ8BAGRNM7qZY1PWWRKM3zkVRWXfXrLL8jEEMlnTjGbUUziJhK5Wk/fsLJ9dJ2ZTX50RU/L5kYLNUGRBtgR7+fYIqaNw58Suho1ug/qK3RcM6GUnTLKUfg4RtjMV5M/uruf9bm9lvmvVTzNJ98H93Af/whJAKuCw2FnjRs0aN6rR3jVzJz189U69sWeuof3shaurIS1CarrDZ9clHJtdGv0MR1VEE+RYRRlUA1uzZZfFiklINn4vDA9K8V+JxpOIyrrc2oq6/FSasb3pkvMYIkVCV/35W2bHU1eUkfv4FM20l+gejpyQ48Uf76n095JsL9/MkCAdmvDPMTV1dWK1QCFtRGq6k3nXtzT6meH0A4gHWGn087j/Jqdf36Y/ebfosNynpyQYv6dd3UwxsO2y/BriXlgeGxq7f0L+q8vqg+dI6BKdv6V2PCp9J+U+PlXw+qpQd/jsutKox/JdnfF05cxbeyTYyzczJMgfSGV1deS3eAIOL1bXvCEO1hYfb51u6fxcHi86LgkAwOe1vkRqJ0ZKuiMQFLy+StW3QUQHAMDo6qzvtQtDIIsNlGD8jvxio7F4xIACAEDv0tfONxJHY/LZdU11iV9PC+14SGqGNGP7og93dMdtQfagl355wmNVKzuOk2wvr+o8rZkhQf5A3kfFOo6d336+X8Wl5Y5j5zdj4F+KdHSHVZLNrSol1y9updJvUsOREozfsRQF5d5jC8ICov8drGAzjG7Wm6JvjaMrAwDQeGJTXW1Hpf+kxJMLiyPuKzl4IOVDcTQlRjcXyfby7RoSpF1Jeh7Q3qdQYSrA1I8EpKM7iK0nGvdrwxHJxu8GU31ppr0K3wZl3T+YeXsvVk5e1Xmq5ihvFBojoauNwSvYDsdSNha8vqbk4MGrrSz7+lx14EwUGvtLe/n2CwkC6dxIR3eQ5DGnsljysF8bv6NQSg4eSg4efHZtRXx43nP/rHsH0TiCxvDFkrpET9Fym3c0Fq/Ua0zuk1OskuyK72/4XDbyGPhre/nmhQSBQMSQzgY2AkMdS2FUpX4WLdpb+PZ6QWi9h2fE+F3BalCjxu98dm1l0icBlwMAQONJ8pbOpov98Qy10q8vJHSJRYLklZv6x62pbDR+lX6TgEBQ/PFe4btbVKMeSCWJevby/4dbU1788R6vrqr5IUFEYVgPcW/2ji1IZ0VKeWUUSrnP+JyHR3MeHUfqeVbEhyefX8mwdFHuO0E4SrLxOyc3KWaXm8aIxVquK5BHldq8FG51KdWoe3X616a6xK+nVTbvJFUDmolD/qtLrMIM/Sl7he0S7OV51eXNDAkCgYghtffoWqOW12bHp1/flv3gCIZEYxVlkDVM9b12io75pfG7+uC52cGH819eIipp81m1NbmJJFV9bfc1RCWdprqkFb9Kv4mJJxdiiBRm95HCRsn28u0dEgTSWZGa7qDxRNMlF5D1ygKBgKxuJG/RH6l+JWrnLtn4XamXh4rT5Ir4cE5FEYZIIakZ0k17IyuAdcZubKpLKshbOAEAmD1c0SLv/iXby7d3SBBIZ0XK+ySoht2phuIPGkoO/4geSjB+R2r+EpV0Gp1cQlfbKQwPAgCoujRi1iXBXr5dQ+rQXLz9yO/iTcRsuJeN5eYl0031GymzIcEEPjYxdcexi++ivhWVlCnI0x3tLDctmm6ooyG5q40wbYeNHeEy23PUqt1HI2Pi5cikvj2s9q6Zr6qkKLyuE1fuxCWn8QUCfW2NiaMGLpk6thWOqH85cF8oAABUpUZl3tqraDucrGkm61g6A/vPBGzYf3K4U68FXu7VNbWH/K8PnLw0LOCojka9EgsSTODLK6uGTl+hQKdtWDBVXVkxIyf/wNkAl0mLY0Iu8vn8prqocvXWqbbCmgeLxSSkZExY5jN9zIj5k9zeR8Ue8r9eXll99+QuAMDO4xe3HvYf6Nj9+LZVRALu1uPQ9b4nk9Kz/bZ4S/tb2Mn523Wn5POjjJu76vKSCUo6epN2yDqczkBFZfWOo+ddetleP7IVaenZrcuAyUsDHzxfOWuC6EgJJvCfvsYXlpTtXDl3wqiByODedl1PXL2TV1iSkZPfVJeY7rTGmgeFehsZ8/LK4R7duiAlhj9Gf3/1/jOXx6usqtlz4nJPqy63ju1EAh7h3Lu6ts7/xoMVs8braapJ4Xv31/C36w5JzVDJ4R8cjanYfSSGIG6LB2kFbyK/1tSxRjr3FrZYmxsXRzxoOFKCCbyGqhIKhTp66ZaxnpathQkKhTIz0Dm4YTEAgMfnN9UlRuuseYz1tBDRQTDS1XobGVNZVRP2KZrF5vwzuL/oU9UoF8e7T8Nef/wCdadF/PW6o2qgMWyhrKPoVGTlFgAA1JR/vU9Nggm8qb62n4/32n0n+o5boMig9+thNdyp1z9D+uNxWAldUolfvX7kWCwGAMDn8xEbVsSDVYiGqhIAICe/SCqn/nv423UH0k7UsliSB/zSBH6qxzDPES7PwyOevvn0JOzjzUevDp4LfH75PzkSUUJX2yNHSXwjyWJzRA8RL3rJH4E0BOoORMpoqSkDALJyCyUPa44JPIlIGO7Ua7hTLwDA0Us3V+z0u3Dz4byJbpK7hLTR8r3R6xIrpJORkw8A0FRVatFUkEZ0R3T7NQTSUnrZdiUTCQHBz5ZMHYNUkkrNyrUdNX3OeNedK+cKh0k2gb9wK+T2k9fXDm0RPj0N7e+wYqdfQXGphC6xSKRYShQA0MeuG5lIuP7w+dJpP1+c33z0CoNB97cXr7cDkUw93aHT6UYmZoK4RlKAkHbFyMSMTqfLOgrpQKOQ182fsmH/yVGzV48d7sxisY9cvIFBo4WvnxAkm8CrKDKehn0cOm35VI9hKoqMwpKyk9fu4rDY0QP7VtXUNtUlFom0Son+uC6qHHJdHgs3THYbDAAIDH7x+PUH7xmeGirwfqdl1NOdwYMHJ8TFyi4YSCfBe4YnU4F+9NKtpVsPUeTI3buand+7wdLEQHTML03g75zcdeBs4Abfk+WVVUwFeTtL071r5nczMwQASOhq7+tSYTKOXr41Y80ugUBgaqBzxGfZ9DEj2vu8nQ+UQGQHOaRD8+3bNwsLi4g7Z1paFxjS0bEZNcNz0hQfH59mjP0jgIWcIRDI7wbqDgQC+d1A3YFAIL8bqDsQCOR3A3UHAoH8bqDuQCCQ3w3UHQgE8ruB+7M6G7auM2QdAgTyC6DudB60tLQCAtq9Eqa0OHToUGlp6R+71O3Ro0cBAQF+fn4kEknWsTQLc/PGrXj/TOB6ZYgMSE1NNTY2vnDhwvjx42UdS+OUl5fr6Ohs2LBhxYoVso6lEwJ1ByID5s+fHxISkpCQgMX+uXfcy5cvDwgISElJwePxso6lswHzypDfTUFBgb+///Lly/9k0QEAeHt7FxYWXrp0SdaBdEKg7kB+N4cPHyaTyVOnTpV1IL9AQ0NjwoQJe/bs4fP5zRgOaQFQdyC/lerq6mPHji1evFhOrgO46K9evToxMfHevXuyDqSzAfM7kN/KgQMHNmzYkJ6ezmT+2vj9T2DUqFH5+fnv37+XdSCdCqg7kN8Hh8MxNDR0c3M7ePCgrGNpLu/fv7e3tw8NDe3Tp4+sY+k8QN2B/D7Onz8/a9asxMREHZ2OVNzZ0dGRwWDApy0pAnUH8psQCARdu3a1tra+cOGCrGNpGXfv3h09enR0dLSFhYWsY+kkQN2B/Cbu378/cuTIz58/W1lZyTqWliEQCCwtLW1tbc+fPy/rWDoJUHcgv4k+ffrQaLTg4GBZB9Ia/P39Z8+enZSUpK2tLetYOgPwPTrkd/Dhw4ewsLDVq1fLOpBWMnHiRDU1tQ6UDv/Dgfc7kN/B6NGjc3JyPnz4IOtAWo+vr+/mzZvT09MVFRVlHUuHB97vQNqd+Pj4e/furV27VtaBtIm5c+cSicRjx47JOpDOALzfgbQ706dPf/v2bWxsLBrdsf/OrV+//vTp02lpaR3FHOOPpWP/HED+fLKzsy9fvrxixYqOLjoAgCVLllRWVvr7+8s6kA5Ph/9RgPzhHDx4kMFgTJo0SdaBSAFlZeXJkyfv3buXy+XKOpaODdQdSDtSUVFx6tQpb29vIpEo61ikw6pVqzIyMm7cuCHrQDo2UHcg7Yifn59AIJg9e7asA5Ea+vr67u7uO3fuhInRtgB1B9JesFisw4cPz5s3T15eXtaxSJNVq1Z9+fLl2bNnsg6kAwPfZ0Hai5MnTy5evDglJUVdXV3WsUgZFxcXNBr95MkTWQfSUYG6A2kX+Hy+qalpv379Tp06JetYpM/jx48HDx786dMnW1tbWcfSIYG6A2kXgoKCPD09Y2JizMzMZB1Lu2Bra2tkZHTt2jVZB9IhgboDaRccHBzU1dU78Xufq1evenl5xcXFGRoayjqWjgfUHYj0efHihbOz89u3bx0cHGQdS3vB4/FMTEwGDRp09OhRWcfS8YC6A5E+Q4YMqaure/nypawDaV/8/PxWrFiRmpqqqqoq61g6GPA9OkTKREdHP378uONaXjSfadOmUalUPz8/WQfS8YD3OxApM3HixK9fv3758gWFQsk6lnbn33//PXjwYHp6OpVKlXUsHQl4vwORJmlpaYGBgatWrfobRAcAsHDhQg6Hc/r0aVkH0sGAugNpPRwO59GjR6Itvr6+ampqnp6esgvqt6KgoDBjxoz9+/ez2WxZx9KRgLoDaT35+flDhgyxsLC4cuUKl8stKSk5d+7c8uXLcTicrEP7fSxfvjw/Px8u5GkRML8DaT0fP37s0aMHGo0WCATq6updu3Z99+5dRkYGhUKRdWi/FS8vr4iIiJiYmE7gMfR7gN8mSOvJyclBtkQIBILs7OyQkJDa2tpt27bl5eXJOrTfyqpVq+Li4h48eCDrQDoMUHcgrScvLw+LxQoPBQJBXV2dr6+vrq7uokWL0tLSZBrd78PS0nLo0KF79uyRdSAdBqg7kNaTm5uLwWDEGrlcLovFOnLkiKenJ4fDkVFov5tVq1a9fv367du3sg6kYwB1B9J6cnJyeDxew3YcDmdqahocHPz3JJj79evn4OAAb3maCdQdSOvJzs5u6DSMw+E0NTWfP3/OZDJlFJdsWLly5d27d2NjY2UdSAcA6g6k9WRmZoq14HA4dXX1sLAwNTU1GQUlM0aPHm1qaurr6yvrQDoAUHcgrSc3N1f0EIvFMpnMly9fdj6DweaAQqG8vb0vXrzYUI4hYkDdgbQSPp9fWloqPMRisYqKimFhYbq6ujKNS5Z4eXkpKSn9999/sg7kTwfqDqSVFBYWCpPKWCyWRqO9fPlSX19f1nHJEgKBsHjx4hMnTpSVlSEtOTk5q1evhibwYkDdgbQS4UMWFoulUqmvX782NTWVdVCyZ968eRgM5vjx43FxcTNmzNDV1d2zZ09iYqKs4/qzwDZjDATSCMiiZDQaTSaTX7161aVLF1lH9EdAo9FGjBjh4+Ozbt06HA7H4XDwePzftoD7l8D7HUgrQTZJkEikZ8+eWVpayjqcP4KwsLChQ4deunSJy+UKBAJkk7pAIBBLwEOg7kBaSV5eHoVCef78uZ2dnaxjkT2BgYFmZmZ9+vR5+vQp4r4s7OJwONnZ2TKN7o8D6g6klZSVlQUHB/fo0UPWgfwRyMvLJycno1CohgspAQAZGRmyCOoPRgBpNgEBAbL+7/p7CQgIkPX//y8ICQnB4XCNGi0qKSnJOro/C5hXbjFzdvvLOoS/jhOrp8o6hF8zePDgwMBADw8PxBhEtKukpITP50N3HiFQd1pM94Husg7hr6ND6A6yVeLatWuenp5iusPj8YqKipSVlWUX2p8FFGAIRJp4eHicO3eu4dMWfKUlCtQdCETKTJ48+cyZM2LSA3VHFKg7EIj0mTZt2smTJ4XSg8FgoO6IAnUHAmkXZs6ceeDAAeRrLBYLdUcUqDsQSHuxZMmSHTt2AADYbDbUHVGg7kAg7cjatWs3b94sEAiQbSUQBPgeHQJpX3x8fOrq6l6/fi3rQP4goO78boqy0ytKCggkOQU1LZIcVbqTrxxiylBWX3fheWJU+O7pgz1X7Bo4Yb50TyEkM+FrXXWlkXUvCWOSot7xuOIlJRTVtJkaOu0UlWR8fHxkcl4ikUin02V19j8Bc3PzMWPGCA+h7vwmuGxWyIVDLwJPlxf9sERAoVBd7J1GzV5r0K2n1E+npms8e+dZHVMr5LAwO43HYavqGktlcj6fd8tva4j/ATyR5PdGksPDvrkjuWyWWOPwGSvdFmyUSiQtZcuWLWryZApRNj/2SZ/fyOS8Mie3rHbICFeoO78bVm3N/nmjkqM/GFk5uC/cpKxtUFdVmRD55uX103tnD5+144yti6t0z0iRV+wx2EN4GLh/HYlCm77lePNn4HE57LpaEoUm1l5VVnxy7fSclDhlLf2yQkm5Ui6bxWWz7IeNHTrVW7SdpqDU/DCkzuaBmiMtFGUYwF/I7IAEsRaoO7+DAN81ydEfBk6Y77lil7DR0nGQ/TDPPbOGXti22NSuLxqLzfgepW5gJkdnZCbEyDNV6ExVZGRFcUFRTjoOT1DTM8HiCaIzczns7KRYgEKp65vg8ERhe21VRUbcF2UtfSKFlvE9KvFzuI6ZVfyn10qaegqqmpKjzU2ND7tz8e39q5PW+NoOGC3We2X3SlZt9cYroWc3zZWsO7VVFQAARTUdDUNoCQapB9Sddqe8KC/sziU1PZMx3tvFujQMu4xfuac0P1sABLkpcXtnD5/mc/TVjXMpXz8iDyOlBTn+W+Z/C3+OjCeQyMOmLx8+YyVy+CX04bnN86rKSwAAJArNa/1BFOrHC8qspG97Zw/3XLHLsGvPAwvduWxW7PsX8RFhbvM3Dp68uNE466qrPj6+EXbnYnL0BwVVzX7/TDe2dWw4zG7g6K59hmBx+F9eeE1lOQCARJFyDgvSCYC60+7EfXzN53Hth41Fo8VL+gIA7Id5Il8UYzMAAGF3LsnR5OfuPq+qa8TlsA8scKsoyl+4/2oXe+faqvL7p/fd8ttKlKO5jJtTXpx/cu00irzi4sNBWsYWmQkxF7ctqa4slVdSFZ1fz8L20PO0BY5qDsPHNfWclRgVHnb7wqcnt3g8nlW/Ycv8bnXp6YRqYvO0jfOoZl44cr9DotA47LqCjBRWXY2arnHDBzfIXwjUnXanKCcNAKCubyZ5GGKSUJSTvvv+VzQGCwD4EBKUk/x9ysbDVv2HAwDwRNKE1XsTI988On/IZdycT49vsWprpmw6om9hBwDQt7CbtO7AzqkDWhrezqkDkqM/aBpZuC3YbD/ck0JXaMO11qOmqhwAEPH0TtChTYgGoTHY3qMmjl+5B08kSesskI4I1J12h8flAgDE8jJNYdl7ECI6AICEyDcAAByBGP/p59IPpqZu1Mvg0vzsjPhoAIC+5U+7P30LO9EUTzMpyctS0TF0nbuuW98hwlNLhdrKcgBASX6217qDWiaWVeUlTy8ffX3rPKu2evaOs1I8EaTDAXWn3aEzVQAApflZzRks+pRUWVYMADi9YVbDYRWlRdUVpQAAOTpD2IhCo8lUekvDG79qz8ugM0dXTqIymL1GTHB09VLVNWrpJI1i7TTCLywXRyQKHzANu9nvmjbwQ0jQmKXbGMp/Y01RCALUnXZH19wWAPD1zZO+7tMa9gr4/OrKMuHTDRrzMweEwxMAANtvf1ZQ1RD7FBZHwGBxyNtu0XZ2XU1Lw7NxHmXjPKokLyvszsU3dy+FnD9oZOXgOHqy3UA3Aonc0tlEQWOwBHK9HzAUCmXavV9y9Iei7DSoO38zcH9Wu6Nj2k3dwCzq1YPEqPCGvQ/O7V89rEtS1LuGXWp6xgCAwqxUHJ4o/FddXorB4lAolIKyOgCgKCtNOL40P7u2urJ1QSqoao6as3bXva/eR+/IK6tf3LF0+SDDxM9vWzcbQuy7F3eO72DV1pPC0oJsZHlRW2buKAR9KfQ49y2tpE6KIzsHUHd+B1M3+6FQ6MNLxkY8vS10wGTV1tw5vuP20a3aplYGXRupymDrMhqFRj88t5/D/vHjWFVWvHPqgP8WjwEAmNj1AQCE3jqPdAkEguCzvo2eHY3FIKf7ZZwoNLqLvdOcXed8HyW4zd/UinRPRtyX+E+v+XweAKAgM/neyV33Tu4U9qZ8/fjh0Q01PRM1PZOWztwRqWXzC6o4XL5AiiObybOE0qW3kiZc+L7oRuL9b8VSHCwV4HPW70Dfwm6Z381T62ceWzWZrqiibmDGZtXmJMXWVlfaurhO33K80ZfWqrpG/yzyCTq0acs4R3MHZz6PF/nsLpfLdlu4GQDQre9QfcvuoTfP5abGq+ubpsdF4XAEZS19ARD/2cXhiUx17S+hD8/5zNPtYu00drZob+CB9aya6kbDNrbtLdbCYdedXv8j35SZ8JXDYh1b6YUcTlizj66ocmXPyqSod35huQSynOPoyV9CH4acPxQd9ljbxLKsMD8hIoxMpc/cdqoN38uOhFd3Fa/uKtId2Rx8QtJOheeaKpPN1eSSCmvnBCaMs1H2dTVo+2BpAXXnN2HWo/+ue18jnt1JiHxTVphLotCMrOy7D/bQMe2GDCCQKSa2jopq2qKfGjJlqZGVQ/iDgLy0RDyR1M9jeh+3KUhmBIVGLz929+nVo0lf3pcWZFv1GzZw4sIA37UCPg9ZNWNi66jw/xzK7F3+If4HaysrCGTxVXwFGcnIS+6G1NVUibUIBIKqsh9/D9V0jYEuEB7yeTwAgLZJVwwGi8KgAQBYHH7xoeuRL+59DXtcWpBDolDdFmx0dPWiynSfRKfnY0blqfDccTbK+0YZIH6HWx+nH3+TM8Jc0clQvi2DpQhKzPgeIoHAwEBPT8/TkY3/lkLaj5k2tICAgLFjx7ZxHhQKdXyMsXT3Z+VXsk+F58bl11CJGLeuSv0M6BMvfh/eRXFaT9WgL4XXIgv2uRroKhDvfC26+Cn/lKfJ19zqoC+FpTUcLQZxRk9VAyYJye8IR7YxnlV3U65E5keusFOm4JCWShav655Pg0wYJ8aKbwxu0eBWMzsggdTF6fr168IWeL8DgbSegirOkBNfi6s5I8wVVai4jQ9Sh5ophKdVWGtSAADZZazwtIpqNg8ZGZ5WceZ9bsDngn4G8opyuKCowsDPBS8WWmnJE0RHirHsdlJmqfiefoTZvdQHmTDEGiOyKvUUiEIdAQBQCZguKuSIzEbeObRosBSBugOBtJ5T4TkFlexD7oYe3ZQAAEv7ag47+RUAgAKNVA0FADyILXk+34pKxAAA+hoULbqRGPyteG5vSUsKVKn4pp5JKPhG0oLZZaxuGhSxRnUaPiq7issXYNGoVg+WIlB3IJDWE5ZSTiVg3CyZyCGdhJ3TS33t/ZSmxk/vqYqIDgDATosKAMitYEs+xWoXbckDxKjh8Ek4cT0i4TEAgKxPG/sAACAASURBVBo2j1bfe6hFg6UIfI8OgbSe7HK2FoOIEbkvsNUSv30QRV/xZ/qGiEMDAKT47hwBg0bxGsyJnAWHEf99b9FgKQJ1BwJpPWwuH4+p9zBCwjXiOiAE256/zAhMOWxJDVessbiaQ8ajG97atGiwFIHPWRBI66EQMBV19X5vcysazwG3mpbmlU2VyR8yKnl8gehdWHxBjamyXMMZWjRYisD7HRnjO3fUor6/MABs6chmIuDzc5K/p3z9WF6c3/xP5aTExX963dTq57b0dkSMlcjppayy2p/Sc0/a631VqXhNeUKj/xrNKw80Uahi8Z4mlApbXiSVFVZxhpiJK1RLB0sReL8jY0bMXInsLJfiyObw+cX9y7uWI0alKBTK0nHQ9C3Hf7ltqignY/tkJ1ZN9ZbAdw3dS9vS20EZaaH4Krls2a2kbcP1FMm4gM8F79KkvLyrpXnlsVZKx9/mrLqbwuULLNTkYvNq1gWnqtHwk7urAgB4fIHn+VgDJmn3SP1fDm4/oO7IGGSblXRH/pKUmE/HVk3W7WI9e+dZeSW12PcvAvatPbZq8sqTwRI+JRAI/Lcs4HMbWWPSxt6Oy1grpc9ZVVci8x/HlwIAumtT97kauJ6OkWFIRBz6qpfZoptJQjd1Kw3KIXdDKgEDABAAILpQSPLg9gPqzm+iND+7JD9bQVWToaxeU1GWmfBV3cCMymBmJnytq6kysnIAAGQlxnDZbF1zGz6fl5P8nc/jKWsZEOV+vB8RHdlGHpzZh8XhFh0MoDKYAABlLf3q8tJbfv/GR4SZNOapjPAq6Ezi57fOnrOfXPaTbm/HBYNG7Rmlv8JZK6O0TkkOp6NA/JZXLXxX9U83pR46NGQJ8ghzRQs1OTPln9YiDBI2aJq5KhUvNrLt6CgQ7860yCxj5VeylSg4HcbPaTEoVNA0czk8pjmD2w+oO+0Oq7bm1PoZUS+DkScau4Hu3foOOb1h1uJDgV37DAncvz4tNvJwaBYA4OaRf3NSvs/eee74yskl+VkAADyBNNZ7e/8xMwEAoiNF4XE5jdpoIOhZ2ImZivL5vNh3L8x69kdEB6HH4H9u+f37JfRhU7pTlJNx/dDGETNXNrq7qi29HZqMUta7tIo+BnRkMQ4AICq7Svi+HMnCIO1qNLwarZ4ZPg6DctD94TYtOlJaaMkTtBrMiUIB4Ul/Obj9gLrT7tw84hP1MnjAhHlDpy4DAAQd2nTL71/EFktsJBqDqS4vvbh96bhVu42sHMoKco6vnnJlzypbF1cJv7G1VRV7Zw9vqnfbzU9i5foKs9LYrFp1fVPRRqaGLhZPyEn+3ugkAoHg/L8LlTX1h01f/vr2BSn2dnRKajjed5J66dJ3jNBToeIjMiv3Pc9UouAGNnjNBBEF6k77IhAIwoOvqegYei7fhUKhAADTthzb6G7X1PjaqooRM1bYOI0EAFAZzH4eMwL3r8uI/2ru4NzUR+RojF33m0woMJTVxFqqy0sAAHL1/dtRKJQcVV64uVyMV0Fn4iPCNlx8gZgcSrG3o2OlQdnvarj9SXq/w1FIi6ky+aC7oeiDDKQhUHfal5K8rJqKMuv+IxDRAQCg0RjbAaMfNOHRBQDoYv9TYuiKKgCAuhpJm/RQaDRTvQWvPHg8rpih6o/AsFger5G8b3Fu5vVDG4dOXab9f8sOafV2DsZaK7l1ZaaV1JXVcpWpvyk/0tGButO+1FSUAgCojHrvpyXIBBqNEa0whUJWc0nVq4RIkmvUiZlVW81U1xFrRN5DKapqjZy1quFUbentTOAwKCMlWJmnBUDdaV9QGIywlI0Qdp00bXRbmldmaugidyKijbVVFTUVZUqaumIff3P30vcPLz2X70yO/oC05KcnAQDSYiOryooLslJb3Wts6yi8B4T8bUDdaV8YSuoAgOKcDNHGtNgIKZ6ipXllEoWmbmCGFOcSEvcxFABgZN1L7ONZiTEAgADftWLt53zmAwAQy9TW9Z78WIKSarmuzsr4C7Fd1SlrB7Rs9eAfDvyPb1/k6Aw1PZPvH16WF+XRmapI5fLIZ/ekeYoW5pUBAH3cpgTsWxN256KjqxcAgFVTfe/Ubjk6w27AaAAAsrxIQVVTSVPPfZHPqDnrRD/75u6lAN+1a/2fqumZYPF4twUbW9cr3RqBnZh36ZXtujW8mZTUcC98zIvNq+HyBToKhIm2KobM1j9awv/7dmfUnDUn1kzb5uVk4zySz+NHvbzfx33Ks6uNlypvBS3NKwMAnMfOig4NOf/vwncPAuWVVOI/hVWUFM7Z7Y+kltK+f94/z3WQ16Kxy7bjCSQ8od6PF45ABAAQyRSkRmBbeiEdhZjcag//byyuwFGPjkWDqxEFZ97l7RtlMNa6lQuyoO60O90H/UOmyr+9fyUvLVFF22D58XtIXSqkiqaWsQWO8GO9loZBl7rqelbqNAUlE1tHCoMpNrKNYLC4ZX4339y9HPP2aWVpsbXTiL7/TNM0NEd65WgME1tHZU29Rj8rr6RmYutIIDW+X7ktvZA/lgVBiWgU6uk8S8QNOq+CPfh49JZHae7dmK3zJIS68zswd3Axd3ARHn54FAQAoMgrAADGeu8Qtos9lQAATLv3M+3eD/ladGTbQWOwfdym9HGb0rBLx8xq5akHTX3Qqt8wq37D2qP3T6OGzb8eVfAps7K4mssgY+11aGOslIj/d6VJKKy9FlmAVNrTVyRO7q6qzfjxV2Hixe99DeijLZnH3uQkFtYyKbjpPVW7qVOic6rPf8wrqGTrK5IW9NFAXI0FAjDG/1t/Q/mxVkonw3PjC2qIWLSzMcPTWrnR3+isMtalT/mx+TUCgcCASRpvo2zy/70XkgNuNSU1XBUq3r0r0+D/D1aqNLyzsXzg58LcCnbrVjlD3Wl37p7Y+erGuVWnH6poGyDJlPDgaxR5xU6zJ7tTwuEJxvh/SyisGWqmaK5GzipjbQpJC/pSeHO6OQaNep5YNu1KnIY8YYAxg8sXBH0pPPs+7/4siy6qcgCAiMxKIhZ9JaLATJWsQsXf+1YU/K34kLvhxgdp/QzpJBzmzPvcJ/GlrxdbYdAoFAp8yqzEoFGXI/JNlMka8oT3aRUPvpfE5FZvHy5+y/kuvWLypTgqETPMTAGDRj2JLz33Ie/kWOPBpgqSAxadJDytwvdFJmgMeRL29DjxkooKZGzgVPGf1co6HhaNkie1UkCg7rQ7Ns4jn1z22znFxcbFFYPFfX3zqDg3c8a/Jzrl+t1OQ1R2VVR21e6R+pPsfpTTexRXsutpRnxBTRdVuV1PM0h4dMgcS8SBeE4vNcdDn/3Ccvw8jAAAAAUexZecGWcy2FQBAGCvQ1t2O2nJzaSn87shOz/XB6f6f8iLzqlGyk6gUKiwlPIDow2RdAmby/fwjz3/MW9eb3XRTVtcvmDJzSQGGftkXlfkvGsHaA878XXl3RQnQ/kvOdUSAha9NDIe3dResGYaKkdlVz1NKB1hrtjqbetQd9odTSMLn4Dw0JvnspO/c1i1lr0H9R45UdfcRtZxQX7Nu/QKT2tlHAYFABhsqoDoCADgzHgTUdtzHQZRmYpPKqoVflCDThAO7qohBwBwNmIIt5t3U6cAAPKrfjq6K8rhxlj9yNHiseixVkoRmZXv0io8rH4mbj9lVmaVsdYM0Bael4BFT+6usi449V16JWJL2lTAonRTpxx0M2z19yShsHb61Xh1OmHbsMYzgM0B6s7vQFFNy23BJllHAWkBdlpUj25KQV8KnyWUOerRHPXpA0wYGvT/vwGgE0LiSi5+ys8pZ9dx+Fy+oKyWSxe5WRDNeiB7tURvMeQIaMSCS9hixCSJLqLUUSACAHLql5pILqoFANz4UvgqqUzYiFgdphTXTumuKiFgafEiqWze9QQNOuHyJDMGufXqAXUHAmkEFAoccjec3F3l3rfi0OTyB99LNjxInWinsnO4Pl8gmHjx++uU8j76dBstKp2IwaBR3/Pr1ZjHNMgJS37vQ8DWy/4ig8VKTXB5AgCAviJJbOGMsxHDVIUsIWBpLQs/FZ679XH6AGPGf+6GlLYZg0Hd6eTUVldmfI9S0tJTUJGmN/Nfgq0W1VaLCgDILmftfJpx8WO+gw5NjoB5nVI+r7f6hkE/t7MdDs1uy4mKqjmih8hdjFjWlknBAQAc9enTezZpQtpowK6WTNExLc0rIxx5nb3zacaiPhqrXbTbLmSyXwcJaVdyU+L2zh7+8dFNWQcCAABVZcVp3yLzM5J5XE4zhsuSd+kVx9/kCA816IR1A3QAAN/za/Iq2MhvuLD3eWKZmHC0lPjCmsKqnzN8zqoCAJirkkXH2GlRMWjUk/gS0cbg2OI9zzNrOXwJAYudC8krN/pPvYnnsuDY4p1PM1Y6a60ZIAXRgfc7kN9EYVbq5V3LY94+RQ7JVPqImasGeS2SdVxNklXK2vo4vaiaM6WHqpIcrriG4xeWAwCw0aIqkLEAgIDPBT11aDg06lFcyal3ueaqclnlLBaXL/bE1EwoeMzim4nbh+ur0/ChKeXnP+bpKxLtRKQNAKBCxY+xUroWWbD9Sfq0Hmp0EuZlUtnyO8mmyuRVzloSAhY7V0vzypUs3sYHaaYq5CFmCnEF9VRMg0YQlj9tEVB3IO1OXXXVgQVuVeUlUzYeNujWs6K44M7xHYEH1uMIBGTv6B+Ih5VSZhnrRHjOsf/fRDDlcJsG6yD1qmY5qJ1+l2u5+yNi9HVsrHFoctnmh2lWeyN+vEpvId21qWYqZCe/KCSJo6NAPOlp0jBJtHO4HgGLPhWeezQsBwCARoGBJgq+rga/DLgtfEivyK9k51eyXfy+iHX95274T7fWbJWAutO+sGprinMz6mqq5JmqCqriGZbyorySvGwShcpU18Hif9ziIhkZxPW9KCejojhfSVMP8UIWCAS5KXFcDltV11jobvHDJV7flKqghLjH0xSVlTTEHS1EqSguKMpJx+EJanomwvM2J+DW8SX0YUFmyvQtx3uNnAAAUNc31TS2WD7QKDw44I/VHQDAsv6aCxzV00tZFXVcRTmcJp2A/X9pUJ8hugv7aGSWsugkLGKlbKxE6m8oX8fhGzJJFyaaiVa2UqbggqaZq9N/mivb69CCppkbi1j2CARgtYv23F7qKcV1RBzaRJks1Jyrk83k//+mDI9F7xiut2GgTmJRjUAAtBlEBZGXShICbgs2mtSgaeaNdrV6ayjUnXYk6NCm5wEn2HU/lnVom3abtf20mp4J4kRzdvNcoTENmUp3W7DJaewsAEBBRvLe2cOnbDz89c2TyOd3kT0NY5Zts+43/PAyz+ykWAAAmSY/Z6c/Yn6anRy7d/bw8av2xn96jYwHABjb9J7ve5lCF1++UVqQ479l/rfw58ghgUQeNn358BkrfxmwKPkZyWUFOaAxqApKYs7NAADTHn1Xn32kbfLTcpBCV6ApKNXVVDWY4M8Cj0U3ZejFlMMx5eqt/BT+EvbQrvdoQ8CixazUFeVwDvU/i7y4opOwyEpCUex1xG3YyXg0sgKoRQG3GgYZ26gVfFuAutNefAgJCjl/cNSctU5jZuJJchnxX85tnue3fMK2mxECgeC/JWMqS4u8j93Rt+heWVp4aaf3ld0rtE27GXTtgUajAQAP/Q/YDhi950FsdXnJ0ZVeN//z+RgSNGD8vK59h2QlfPNbPv7q3lXbbn5CNnkCAILP7LVxGrnzXjQGg30ZdObBWd8ru1fM3nFWNCQuh31ggVtFUf7C/Ve72DvXVpXfP73vlt9WohzNZdwcCQGLXdrTK8deBJ5s9Kq7D/pnzq5zYo10RRXEsFVIbmp8WWGuqKMr5K8C6k57kREfDQBwGDEeKQVhZOWwwPdKUU46j8upLi/VMbPWt+zepacTAIAoRxk9b8O38Gff378w6NoD+bgcnfHPIh8AgIKqpqPrpFt+W3W62CDbOOkOKuYOLp9f3Oew63D4H0tgKXSFiWv3Iw5+7gs3x75/EfnsrvDOBSHy2d2c5O9TNh626j8cAIAnkias3psY+ebR+UMu4+ZICFhsS8foeesHT17c6FUTSORG2xFyU+OLczOzk2IfXzqibmDWcB8s5C8B6k57YWLrGHL+4JFl4wZNWtSlZ3+GioaGYRdkLyhNUXn2zrMAgJL8rIriQh6HjdQLrigpFH5ctD4fTVEFAGBkZS9sQW4fWLU1Qt3pYu8kahtq2K1n2rfI/PRE0ZAQj0EcgRj/6bWwkampG/UyuDQ/W0LAYsjRGXL01mQrg8/sffcgEDE29Fy+U16pEU+yvxDRDM5fwt91tb8TS8dBc3efv3967zmfeQAAFR3DHoM9Bk1aiHhrPblyNMT/YHlRHhqNwZNIiBePqH07mSYv/BrpFW1BoTGg/gdoCsqiZydT5QEANZXliNUWQmVZMQDg9IZZDaOtKC2SHLBUGD1vo9OYWSUF2e+CA7Z79XdfuHnoNG9pTd5xaZjB6fRA3WlH7Aa62Q10K8rJiH33POpV8L2Tu6JDH6678Dzi6Z2AfWusnUZ4LP5XRccQKXezalibbDHEHqmQhXli76pweAIAYPvtzwqqGmIfx+IIEgIWe85qaV5ZCFNDh6mhYwBA94HuBxa43fT713H0ZNGypZC/BKg77Qifx0VjsEx17b7uU/u6T713cted4ztSYyK+vH4IAJi0dj/iuAwAyEr81sZzFWSliB4WZqch+1FL8n7WNVbTM0aW8CFOQAhlhbk0RWXkGa2pgA1FHvFakVcO8F37PuS6z7W3NMWfN2Vqesbfwp+V5GV1Gt25FV10OSJ/90h9gzYYD7edZwmlwiU8C/poOBnK/+oTreHk29zH/1853dRbdglA3WkvDiwYXVNZvvp0iPCmA3nkQWMwRDIVAFBdUYboTmVp0f1TuwEAXA6r1aeLehlcnJupqKaFLM+JeftUXd9UXklNVHdsXUbfPrb94bn9JnaOSGKoqqx459QBanomS4/clBCw2LlamlfWNLJ4ctnv1tGtXusPIs+M5UV5kc/u4YkkVZ3WrLL7M8kuZ4WnVVSxG6l9+DvJr+SEp1VM76mqQSeo/78i+/PEskdxJTnlLEU5XHdtqqe1cvP9SZ8llN77VlxQyVGUww42VRhhrggAMFMl8wWC9+kVj+NLWxEk1J32wmXcXL/lEzePte9i70wgkQsyU7+EPuxi76Rnbsths17dOHt4yVjbAa7VFWXRoSGT1h24tNM7+vWjF4GndM1tW3E6sx79d0x2tuo/HE8gRjy7W1tVMXOr+C2Jqq7RP4t8gg5t2jLO0dzBmc/jRT67y+Wy3RZulhyw2DwtzSv3Gjkh5s2T17fOx314pdPFmlVbHf/pNZfNnrRuP4EMvZbbBbeuTBvNH8uIltxKCooqNGSSzFTJ3/NrrkcV+n/Ivz3DvDnFlH1C0k6F55oqk83V5JIKa+cEJoyzUfZ1NeijT++jT8egUVB3/iy69hmy8Urou+Br+RnJHFadvJLarO2nbZxHotBoE1vHFSfuvb13JTMhRlFNe9GhQN0u1jgC8XnAifiIMGPb3ia2jopqP0tE0JkqJraOcrSfv+oq2gYmto6iaRcTW8fhM1e+vumfnfLdxM6xj9sUY5veAACiHNXE1lGY0BkyZamRlUP4g4C8tEQ8kdTPY3oftykMZXXJAbfxW4FCoebs9u/tOinq1YPi3Aw8kewyfl5ftylKTVjHQ6TIna9FQVGFU3uobhumh7zw3P0s47/Q7MufCmb3+sX7xI8ZlafCc8fZKO8bZYB8duvj9ONvckaYK7bx8Q3qTjuiaWjusWRro12ihu0IFr0GWPQagHwtZqsu2oUwYMK8ARPmibYIBAJ9Czt9CzuxE6nrm4rNZtCtp0G3ni0NuO00vIo/kAsf8+/GFO0YoS+6iSG+oGZ9cKqrBdOruwqby7/1tehtakVRNUeJgnPUp7t3VWr4yHI1suDGl8JD7oZC562MUpb37aSxVsqImSlfAO5/K36aUFpYxZYnYfvoy4+xUsJJY1uDGAVVHGtNind/TeEqi4m2Kv+FZsfWNwxqlOtRhSgUEDW+WNpP8+z7vGuRBVB3IBCpYaZCXnu/4lZ04WqXn/ebN74UhadVrB+ow+UJJlz8/iGjcoipgokyOaGgZsnNpOeJZUcb7AXNKK0LT6uo5fCFLTUcXnhaBbLhgC8AM6/FP4orGWDM6KZOSS2pW30v+XpUQeBU84bSs+x2UmZp44m/2b3Uf7ntc5aD2iyHevc1lSweAECJ8mt774isSj0ForLISCoB00WFHJFZ+cvPSgbqDgTyk+7aVB0F4r1vxULdEQjAnZgiQybJWpPyKK4kPK3Cu7/mcictpHfpraTrUYUrnLSQ3aHN5Gpk/qO4Ep8hukJFuBldtOhGov+HPDGNAACoUvECQWOzACC6+7SZCATA90UmFo0aY6X8y8HZZaxuGuIbwdRp+Kjsqv+1d94BTV1vHz/ZO4GEsPdGQJaiFlFcde9ZV6e+ta0d+uuwtXV0D2erXXa4q+LCvQAVHAxF2XuFTQZkz/v+cTXGAJERSJDz+Suec3LuEyRfzn3uOd9Ho0O6VzkLBepOv8cogwPpIXMH221N5uXUSUOcaACA9GoxT6T8dII7ACDGi3XtrTAn5pOT5dHuzGNZTSXN8i7pzqlsPoWANbQNnDPYbuPFirO5/La6Y7jy6iEIAjZdqriQL9g4ydO/E8dHZWodpU35LQoRBwAwtLXvBlB3+j1tMziQnjAvjLs1mZeQw0d151R2Mw6LmRfGBQDQSTgaCbc/o6GgUSaSaTQ6pF6sAgCotbpOTPyE0mY5AsDCvXmGjSqNrowv7/hNPUWm0r13ovji0+ss0+CwGK3OeK2Fuj73sGQ71B0I5Ck82OQhbowzuc2fTnDX6JCzufxR3iwHBhEAcL1U9MqhQhYZNzmIHWBPJeOxOXXS4qYui4VGh1AIWP1zbpRIV0Zv5JVR6lpVyw8WVAsV/ywOHO/f2T0QdjS8QKYxauRL1VQitu06qEtA3YFAjJkfzv34TFlWjUQo1/Cl6gURj1Ih312tIuIwV1aF6ZOy+9Ib4h80tZ0B3f9tmJcRGBgw29EIDWIVeu/2THqYV0bLmc/9JxdBkDMrQrvkzhNoT02rEmt1iKHzYWGjLNC+p7uuoK+7FbHt7dlvx3RYKqDP2LP+jTcimW/HOL4d42i43VkuaS3MuClo4Jl8dzvodNqmmoqK3Hut/EZ945eLY9+OcVw5xPb9MaasES3C9GAOEY+9VCA4m8tnkvETAx99t+tbVW42JL3o6BDQrugAAKgErFGViBulLfrX0R4MkVyTYfBUSKNDPkooSy1vaTMTcGQQO7Jh70xeWaNDlh8s0GiRE6+FdNUSbEIAW6LUXi16sjMwqUTUJFFPCuqpdypc70DaAU8k7UqtN2zhleTuXruksbps/vtfdXRIol3SLsYf2/G5sOFRmRfv0KFL1211Dwz7/NBNAMAva14quX/b3OH3FBYFP8Hf9nKhsFGsmhnK0Vu1BzpQb1W0JpeIXvBklgsUPyVWc2kEAEClwHg9Eu5CR2u/OLOIZDz2UoHQUHdWDHc6ltX07omSLTN9wpzpTRLVN1erzuby0SMIRvQwr7zndl1uvfS7ad4tCk2L4slNEwmH9eKQAQAL/s1zsSFum9WO0/uCcO5vt2o/SijT6JAQJ1pevezTc+VOTOLyoT396wh1B/Js7l44tvfLd7xChjRWl3Vi+BOyks/9+dnr3qFDX92428bOsej+rWPbPtv61qxvzzyk0IzrHFgVc8PsXjtcCABYaPC8+YuJnq8eKliyPx91FH3zBad3Yl1G/5z17dXK66WiWG+WfmSMF+uVaMe96fUvbL8PABjsTNs+23fsrgdoUtbHjnJgadAnZ8rm/fPoPLADg/jzXL9RPqz2YukRCTl8AMAnZ43/4zzY5FvvRaAVe/xk7a+DyATs4WVBq0+UrDxShLaEu9B3zPHtdll0PVB3zEzpwzQMBuMdOtSwsYXfUF9e5Ojlj/p1qVWK5ppKhVTCcXIzPKJtSFXBA7VSYbixWNhY21hV6hYwmMp49Nup02pqywuVMqmtg3PvleWrryj+Z+OqxR//5OoX/M3L47r03ov7dpCotPd/OYGa+Dj7BIkFTad/+yY/LTlyzPReCtgsjPOzjX81GIMBhobHQQ7UlHcjSvlyuVrnY0dBv37J74QXN8ntGQS0qJYPh4KWG/16qteaONdqkZJBwvnYUXQIiH81WH9Qc4Qn8/rq8EqBokmqtqHgPdnknmyHMcF3072l7R1VJT9exH3+osfFfEHbASgebHLCGyHVImWDWMWlEzxsu7BdwARQd8zMlYO7Mq+d/vFCvqGZ3qldX948te+rE5ksjsO5v368+O92ufTRvX3g0NGvb/7N1sF4982hHz5srC7beqVE33I/6eyh7//34R/nAobEAgCuH//75C+bJS2PfmO8Q4a8tvl3R0/jjbNajbok605H0XqFDNHXpegIIoXyv9/P+oYPL8tO7/SP4RGL/ve9RqU0dA6zd/NBK9t0dao+Bo/DtGtmjsdhAuyfOnNPJ+H02mRUj5xDI3Ae+7djMaDthB5sMloKvfcY7PyMHHClUDHhWclpNxuSYcX3ngN1x8yMmLoo48rJjCun9OenNGpVZmKCd+hQR0+/O+ePntz1ZcyMJbNWrSfTmbm3rv7x6ev/bn7ng10nu3SVO+eP7v/6/ehJ8+au3sTkcEuy7vy9YdXWt2Z+eTzDyIlCLmn9ceXUjub56kSGo6e/6WuxHVy7vZjyHBRh1JJ3NwmDwfh2cEAM0vdMD+Z0VJ2i94C6Y2ZCYyYwbO3SLx/X605O6hVZqyhmxhIAgFIuGRw7ccEH36A+EkMmzE5NOJCfdh013Or8Vc78+Z2di8frm39Hj6QHRcctWvvtrx8tT798fOTMZYYjaUzb787mdDSPwfy71gAAIABJREFUrX2fOhynXz6emnBgzIKV9m7efXndAcj8f/OwGPD9dJ85g59hqzasWy6rGy5UHLrXoNZ2cILjWUDdMTNYHD560rzE/34X1PPQund3L8YTiOShL84FAIye+9roua+pFPLa0ny5VKzTaQEGo1GrZJLWtrWuOkIsaGqoLAmKjjO8gUJlq/TBXSPdwWCxds5m22jfE26c+PfAt2vCRk1euPYbS8fyPLM4yn5x1LPPXvWQTZM9N03u/gYIqDvmZ8TUl64d/i3jyskXl61WyqQPbpyPGDMNTQY31VQc/HZN3p0knU5LJFFwBIJapQRGO8yehVjYDADIT0vOT0s26jKsSGE96HTao1s/vXro1zELVrz00Q+o5SBkIAN1x/x4Dopw8gpIu3z8xWWr7yefVSnk6E0WgiA7Vs8TNtas+GbP4NjJaCLmn41vpSYc6My0GrUKfYHaj74w7aVl63cYjWn7le55XrmHaNSqXz9clnPr6vL1O0fNeaVXrwXpL0Dd6RVGTF104pdN/LrqtEvHbe2d0fp8jdVl9RVFo+a8it5zodSU5rU7Aw6HVysVhi2NVaXoC46TG5FEqa8o1hfPQp+pi0V8o7KcZskr9wQEQX7/5JX8u8nv7YwfNHxM713ISrASa3frB+pOrzB86sKTu79Mu3gs707ihKXvoFahZBodACATi/TDko7+WVdeCAB4dLdlgI29U2FmSn1FEaoLTbzytEvxaBcWh48cN/3O+aPZqVdCYyagjVcO7o7f8fm6f68abR3q7byyXNJaVfDAxt7ZsEaFnpsn995POvvWTwcGguhYj7W79QN1p1dgO7gGRMWe/3uLRq2Kmb4EbWRxHAKHjsq8euqPda9xnNzKstM1GvXc1ZsOff+/079+HTtrueEMwycvvHvh2E//Nz189BSFTJyfdmPMghXn/voJQRAAwPz3vyp9mP7z+wsjx063c/bgFefk3Lr6wvTFRqJjlrzyrbOHH1w/DwCQtgoBALfPHkY38vhHxox76U1eSe6PK6eOWbByySc/Gb1Rq1Ef/3kDkUS5e+HY3QvHDLuChsXFzXu9J1FB+jVQd3qLcYv+7+qh3XYunoZ7+d7eevjKgV8q8u7XVxaHx02Nm/86okPqK4qaeOXNtVVu/iH6WsOhI1/83+9nbp/7r6mmguPk/sHukyq5rCTrDolCAwCw7Bw3HE69eXpf8b1b1UUPbbhO72w9HDZ6Sm98EJVcKhHx0dcBUSPR6jcAAIVMDACg0JlcVy88oR3TTK1W4+obrB9viPXvG4T0KlB3eouIMdMixkwzaqTQGDP+b51R4+KPH60Uhk2eb9je1vvd0N+LTKNPWPzWhMVvmTtwY+LmvxE3/42Oel19g4OiRzt5BbTtIpIoz6shmUaHxGc1JZeKJAqtO5u8ONIeNQkzwrQJ/MNaafyDpmqhQocATzZ5fjhXP4mJrp5wOrt5f0bDnwsDsuuk8Q+ahDK1my359WGO+myURouceNh8vVQkkKmZZPwwD+aiCHtq191UnwnUHUiPkLWKWpobhk1eYOlA+g6NDlm6Pz+lvGW0j40Li3SrvGVfev0vc/1mhT61Q8+0Cfz5fMHKI4UhjrThnkwEATdKRf+m1e9ZFDAhwNZEl1EkXbXmaZSob1e0/nW37sj9xtE+NhwaIT6r6ej9xqR3wt1sSGot8tK+vNsVrWP9bEKd6FUixcaLFQcyGk6/HsIgm3nrA9QdSDvotNpL+3YCAEbNfdX0wXEq02b19iPduERqwgGJSNDVA+7WwKHMxptlLT/M8F4S5YDqy5Q/stefL5866CkXi2vFQhMm8PvS6p2YxHMrQ1FLLY0WeflQQWKxcEKArYkuo0i6Z/l+Pk+Q+FY4KiWjfJpXHy8+l8t/M8b537T62xWt61/0WBXjjI5MyOGvOlb0S0rNuvFm3noKdQdijJNXgF/48Ic3L6IP5nrJsKIg/Yagnsew4dj3t+p9Z3L5NCJu4WMTQjwOs2dRgEylNTpO/kwT+GapJqdeip6NwuMwB5cF6Uea6DKke9Y8rw1z1K9fhrgxUBdUAMD5PD4Jj33dwG1+ejBn/XnC5QIB1B1IrzP19Q+nvv5hb1/l9TZllPsLpc1yNxuSoW2Fu207Z7VNm8B/PM592cH8Kb9nhzjRYrxYo31ZMV4sdE4TXWbBsPQFmYDVW7WXCxQetiQi/slCCYMBXmzyw7pnV/jrKlB3IJCu0cnqEaZN4CNc6bffizyd03y1SHgos+H3W7UuLNIfC/3DXegmuswSP76DUhBKDYLFGKsbAYfRdLFaRqdiMPuMEMjzDYdGaJSonjnsmSbwDDJu6RCHpUMcNDrkSqFw7enSd0+U3FgdbrrLkJ5bvhtiR8O3/Vx8qZpNfXZl0a4Cfd0tj5XYuUM6SbQ7UyDTZNU82YL0b1r9a4cLmyRqw2EmTOClKu1fd+ru8x7NgMdiJgexJwexS5vlQpmmoy6Vxnjd0UPLdyOGeTAFMs3D2id3VfWtqpJm+VB38yf44HoHAukarw93PJrV+P7Jkm+neftwyHcqxd9cqfLmkI0qjpswgacQcH/drf/rTv0PM7zRQsAPayWJRcIQJxqLgu+oyzDzgmLGUqJoJfX4B00fnCrZPts3gEsp5Ss+TCjFYDD6x1tmBOoOBNI1Auyp/y4O/NjAlT3Wm7VjjnE9BtMm8PuXBL53skRfMhSDAaO8bb6Z5oXFgI66+uBz7V0S+MmZskm/PURbnFnE3xf4R7nB9U4/R6NS1pQVAAAc3HzQY6LtYtr4XdDAEzXVk8hUrquXkYuFia7u0a5NvVjYXFua7+Dhi3pIm7aXN3tI1kCcr83dDyLbtr8T6/JO7COr7CAH6p02YzLWRulfn10R2u7kPnaUjrp6yIoRTkYViu3phJpNI/T/HO1jc/v9dj6X2YG603dc2rcz4Y9vlTIpAIBAJE9Y+vbst7/AtHmCYML4vargwT+b3q4ufPTniESlTVjyzqxVn5nuMqSrdjzXDv+Wfvn4d2dzOE5u+sbzf/105dDujUdv23CdTNjLdzIkyAAE6k4fcfPUvmPb18fMWDpx2WoyjZF45I/zf2+hMliTXn7fcJhp4/ff172K6HTrD1x38gqQS1qSjv559s/vnb0CoifNM9FlOH9X7XhGzXkl7VJ8asIB/bEyRKdLv3LSMzjS1TfYtL18J0OCDECg7vQRF/7Zau/m/cqGXegCZ957m0VNtahjqSEmjN81GnVDZcmIqYvQIg0kCnX221+4+oe4+YWolPKOuozm76odT+DQUQ4evqkJB6av/ASNvOheqqipbvrKj03by0dPmtfJkCADEKg7fYFY0NRYXfbC9MWGd1VvfLWn7UjTxu9eIVF3L8ZTmTZDxs/yChmCJxCHTpiDvtFElyHdsOMZNfuVY9vX56clo66Jdy/GE0mU6Inznmkv38mQIAMQqDt9AbquoTFsnjnStPH7uzuOHd+5IeXUvmuHfyOSKUHRceMXrwqKjjPd1UNiZiw5uWtzyun9g4aN0Wk1966djho/k0Jn1pbmm7aX772QIP0dqDt9AZ5IAgDIJC2mhz3T+J1ha/fKhl1L120tzrqdezvxzvkjW1fNfPOHfVHjZproMrxEN2ze6TacyLEz7ieelUtaS7LuSFoEI2ct74y9fCdDggxAoO70BWxHVzyRVFdeZNhYW1YAAHD2DtS3PNP4XafTYrE4PJEUFB0XFB035bW1n0wPvR7/d9S4mSa6DC/aPZt3NLt8P/lc3p1Eezdv/8iYztjLdzIkyAAE6k5fgCcQI0ZPTb9youheKvqlFQuavn99ooO776d7r+mHmTZ+L0i/vmP1/JXf/q23McQTiFgsDoPFmugyiqR7Nu/67HJF3r2pr/0PzVKZtpdXKWSdDKmP2XSFt+VmvWVjGGjUieSTBj3VAnWnj5i/5qvSh2nb3podGjOBwmBlp15WKxQL135rOMa08fsL0xd7Bkf+9vHLYbGT7N29lXJ53p1rCql40svv+UfGdNRlFEa3bd7R7DIWi3th+uInH6pje3mdVtPJkPqSDRs2WPDqA5ng4GDDf2KQrlSqHOAcPXp04cKFe+61du/t0hZhcvyesuwMBEGcvQPHLFiBbsaL3/E5rzj3/V9OAADkUjFq/I7D4/0jY1Dj9/gdnzfxyodPWRQ5bnraxfiC9ButgiYyjeHk6T9y1nJUR9QqRUddZkEsaPpgvM/g2Inv7niqMoRCKkHt5ZVyiQ3XKSJuWtjoKeiCyIwhvRHJPHLkyIIFA8hN9fkG6k4X6KHu9GvuJ53dtXbxez8f199S9SVQd54zoA8G5NnIxC3xOz53DwwLeWG8pWOBPA/A/A7EFGU5GbfPHn5w44JEyP/470ttT5NBIN0A6g7EFGqlorG6LCBq5IvLVrv598ohacgABOoOxBQBUSPRGqEQiBmB+R0IBNLXQN2BQCB9DbzP6jLpV05YOgQIpH8DdafL/P7xK5YOAQLp38B9g1bHoUOHli9fnpubGxAQYOlYnkFJSUlQUNC+ffteeuklS8cC6U9A3bEudDpdWFhYeHj4/v37LR1Lp1i6dOm9e/dycnKwlj7wCelHwN8V6+LIkSP5+fmffdZvzM83bNhQVFR09OhRSwcC6U/A9Y4VgS52Bg8efPDgQUvH0gUWL16clZUFlzyQzgN/UayIY8eO5eXlrVu3ztKBdI3PP/+8sLAwPj7e0oFA+g1wvWMtIAgSFhYWHBx8+PBhS8fSZRYtWpSdnZ2dnQ2XPJDOAH9LrIX4+Pjc3NxPP/3U0oF0hy+++KKgoODECbizCdIp4HrHKkAQJDw8PDAw8MiRI5aOpZssWLAgLy/v4cOHcMkDeSbwV8QqOHHiRHZ2dj96jNWWDRs25Ofnnzp1ytKBQPoBcL1jeRAEiYiI8PPzO3bsWCeGWy/z5s0rLCx88OABXPJATAN/PyzPqVOnHj58uH79eksH0lM2bdqUl5eXkJBg6UAg1g5c71gYBEGio6Pd3d2PHz9u6VjMwJw5c8rLy+/duwedCSEmgOsdC5OQkJCZmfnFF19YOhDzsHnz5ocPH545c8bSgUCsGrjesTDR0dGurq7P0xPo2bNnV1ZWZmZmwiUPpCPgeseSnDlzJiMjo5/u2emIDRs2ZGVlnTt3ztKBQKwXuN6xJNHR0c7Ozs/fs+eZM2fyeLyMjAy45IG0C1zvWIxz586lp6f36z07HbFx48b79+9fuHDB0oFArBS43rEYw4YNc3BweF6fOk+fPr2uri49PR0ueSBtgesdy3DhwoW0tLTPP//c0oH0Fps2bbp3796lS5csHQjEGoHrHcswcuRIGxubs2fPWjqQXmTq1KkCgeD27duWDgRidUDdsQCXLl2aNGnS3bt3o6OjLR1LL5KZmTl06NCLFy+++OKLlo4FYl1A3bEAsbGxDAbj/Pnzlg6k15k8eXJLS8utW7csHQjEuoD5nb7mypUrKSkpz+VjrLZs2LDh9u3bV69etXQgEOsCrnf6mlGjRlGp1IsXL1o6kD5i4sSJEokkNTXV0oFArAi43ulTrl27dvPmzefg6Hnn2bhx461btxITEy0dCMSKgOudPmX06NEkEuny5cuWDqRPmTBhglwuT0lJsXQgEGsB6k7fkZSUNHbs2Bs3bsTGxlo6lj7l1q1bMTExSUlJcXFxlo4FYhVA3ek74uLi8Hj8wEyyjhs3TqfTJSUlWToQiFUAdaePSE1NHTly5PXr10eNGmXpWCwA+vGTk5NHjx5t6VgglgfqTh8xduxYAMBATq+OGTMGi8Veu3bN0oFALA98ntUr7NmzJz8/X//P1NTUpKSkDRs2WDQoC7Nhw4bExMQbN27oW/Lz8/fs2WPRoCCWAa53eoWIiIgHDx7Mnz//iy++CA4OHjdunFKphA909Bmu3NzczZs3Hzt2LCws7P79+5aOC9LXQN3pFWxtbUUiEYFA0Gg0o0ePTk5OTkxMHDNmjKXjsjCJiYnjxo2Li4u7fv06gUBQqVQ2NjZCodDScUH6GnifZX6kUqlIJAIAqNVqBEHQZc6PP/547949S4dmSXJzc//++28MBpOSkoIgiEqlAgCIRCKpVGrp0CB9DdQd81NRUWH4T41Ggx7LGjJkyJQpUzIzMy0XmmXIyclZunTp4MGDjx49iiAI+gPRU1lZabnQIJYBb+kAnkPa/SKhX7YLFy7cvn37wYMH7u7ulgjNAlRVVcXGxqILQJ1O13ZARUXFoEGDLBEaxGLA9Y75qaioIBAIbdtxOByDwbhy5crAER0AgLu7+5UrV5hMJh7fzh85AoFgtDyEDASg7pifioqKtgXC8Xg8lUpNTEwcMmSIheKyGEOGDLl+/TqDwWgrPVgsFt5nDUCg7pif8vJytVpt2ILH4xkMRmpq6gAUHZTw8PDU1FQbGxsj6VGr1eXl5ZaLC2IZoO6Yn+LiYsNEBh6PZzKZN27cCA0NtWhcFiYoKCglJYXNZhtKj06nKy4utmhcEAsAdcf8VFVV6V8TCAQbG5ubN2+GhIRYNCirICAgICUlhcPhGOa/4H3WAATuGzQzMpmMTqejP1UCgWBnZ3fjxg1fX19Lx2VFVFZWxsbG1tfX6+9GJRIJjUazdFyQvgOud8xMRUUFKjp4PJ7L5aakpEDRMcLDwyMlJcXJyUl/w2W4QoQMBKDumBn0rgGPx7u6ut65c8fb29vSEVkj7u7uKSkprq6uqPTAR+kDDag7Zgb9Cnl4eKSmprq5uVk6HOvFzc0tNTXVw8MD6s4ABOqOmamoqAgKCkpNTXV2drZ0LNaOs7NzampqUFAQ1J2BhpnzykePHjXjbP2RkydPjhs3jslk9vF13dzcRowY0cNJbt++XV1dbaaIOotUKk1MTJw+fXofX9faWLBggaVD6EMQs2LpTzNwmTdvXs//++bNm2fpzzFwMcf3r99g/nOhv833nx7CMfu0EBOsPFJkrqk4Q6b6r/rDXLNBOgM//UzRb29aOoo+BeZ3IBBIXwN1BwKB9DVQdyAQSF8DdQcCgfQ1UHcgEEhfA3UHAoH0NVB3IBBIX9O/dedOZeuWpOpGidqMIyF9CS9hW3PaafOOhFg//buexN2K1q3JvElBbHt6Oz7q3RvZSZql6sQiUYNExaESxvjZODGJ5ho8oOCd2WYbNt4ueqYZR3YKBGktuiOtzEYQHdU1iBU0EoPFmWcwpBP0b91ZMcL5pSgHNvXZn6LzIzvDmRz+mtMlKg3CpROapWoMBvPdNK+FEfY9HzzQiNqSicGTzDvymWiV0sKdr7QU3MJTWRgcXi3m070jgj44iKeyejgY0kn6t+5QiVgqsVO3ip0f+UyqRcrVJ4pDneh/vRRgTye0yDVvHiv6MKEswpXhz6X0ZPAAhMDkmn3kM6k8srml8Lbva9u4L8wHGIzg/sWi3f9Xvn+d3//t7uFgSCfpB/kdHQISi4W7Umr2pzc0ilUaHbIlqTqxWGSUtUmrEm9JqpapdHyp+vC9xt0ptWdz+SrNI391M+Z3DmY0qLXIjzO80Vs2FgX/4wwfHYL8c7euh4OfV1SC2obk/TUXdolykgGCtOTdrD69RadSGGVteGd3CB9eAwC0FNyqvfhrQ9I+WU2BfhJz5Xe0Cklj6hF2xGRuzAKAwQAA2BGTuC/Ma05PULc09mQwpPNY+3pHpdEtOVBwq7zFnkF0oBO+vlL59VSvrcm8VTHOY/1sDLM2WTzJ1mRegD31k7NlTDJeq0N4IqUfl3JmRSiDhDOR39mbVt8sbV+PxgfYhjnTjRpTy1sdGMRAB6q+xdWG5GdHSSlraTtDlwY/lwizLhf99iaC6KjO/nVX9tDcgkls54YbB10mv2WUtam9sJsdMYmfniC4d5HEcVU0VSAatdfSbxxGLzWR35HXFjWnn2n30jgyzXmi8XlLcUkGolHbhMYZNtqEjmlM+a+l4JbdsFndHgzpPNauO/syGm6Vt7w+3GnTJE8MBmTVSF49XAgAwGIwRiPRhm+uVB1cFoSKxU9J1duSeQk5zUuiHExc4lKBsJQvb7fLi0NpqzvlAnkAl2rU6MEmJxWLdAjAYro/+PkD0WpK936IozCCPzpOcfJFtJrSf//XdOcEAABg2qy1MRhB1iXOkGlDd+ZicHh1a/ODL8byEraiutMRSj6vKbV91ycCg9NWdxSN5QAAsr2XYSOZ6wEAUDQYV/Lq0mBI57F23bmYLyDgMJ+Mc0dlJdyFviTKflsyr6PxiyLt9UoxK9RuWzKvtFlh+hKHlgd1KSSxUksnGT/OYJBwGh0iVWkZT3d1afDzh7gkXd3a7DL1XYqTLwAAg8N7Lf5SkHm+o/EYDMZr8ZcYHB4AQGDaMYNi+GkJWqUUR+qw2oRN6NjIH+52PiStXAwAwFOe+nOCozAAABq58SK0S4Mhncfa8ztlfIUnm2yYEo7ztTExfrDzk19QJhkPAFBqdCbGmwvU8ayTy5cuDe7XyBvKAAA0t0H6FhyFQfeJ6mg8xdEXS3ySbsdTmAAARK00Z0ztmtMhHfyfdGkwpNNYu+7IVFoa8alFAYdqagMOldjrKwgWGS9Wao0aWxVaPA5Da3P1Lg1+/tApZAAA7NOrFQKjQ1s4LMn4ntTs4GgsAIBGJjZs1MhbAQB4mvGftC4NhnQea7/PIuGxCvVTCxaRXGPeS3Q1r+zNIZe3yQeVNsu92eQ2SaeuDX7+wBJIAACd+qmfgEYqMuMluppXpjh4o4kbVlCMvlFRXwoAoDj69GQwpPNYu+6425LzGqRqLULAPfqa3jT3k6Cu5pVjvVnpVeKcOmmI06M/48VN8gqBYsUIp7YzdGnw8weJ6w4AkNeV6Ft0Krm4NMOMl+hqXpnhOwRLpAgfXjNMVwseXMFg8azAmJ4MhnQea9edMX4293jiXSk17492BQDkN8gOZTaY9xJdzSsvG+Lw263aj8+U/fNSgD2D2CxVrz1dSsRjXx3miO422pZc7cAgLh3i8MzBzz1Mv2gcidZ445B9zAKirROi01b8t9G8l+hqXhlLpDjELa27sqfx5mH7kYsABtN0O56ffsYhdjGebgsAaMlPbS26wx0+m+zg/czBkO5h7bqzYrjTuVz+j4nVR+43sqmEKqFi02Sv1ceLLRiSPYP463z/d+KLh269Z88gNErURBzml7m+HrZkAIAOQbYm8wY701DdMT34uQdLonos2lC275P7n8ZSXQJUonqGXzQ7YmLTrXgLRuU+Z52ivrT03/9Vxn8NAEYjEbAGxXoueiSILQUpNWd30j3DyA7ezxwM6R7WrjsMMu7C/4VeLBBWCBRcOmFiIFsgUwMA8DgMAGCYJ3NNnCuXTgQARLnR18S5urCeHLmkEbFr4lwjXOlGI3vOeH/bW+9HXi0U1otV9nTC+ABbO9qjbDcWg1kT5+rAIHZm8EDAYdQSpu9QUe51RKele4YxA0YU/b4KAIDB4QAArtM/IDs+KuXsMuUdos1Ty0DbsAkElj36hMtwZA/BEkiB7+1vLborKb8PAKB7hjH9h4PH+TZW4EgMFk95fC3TgyHdw8x1+zAYjHnr2Gh1SG2ryo5GoBAePXq7VCB47XDh99O90QUFBK1jQxk05tixYz2cZ/78+UkVcvPWsdHKxRpZC4njqm95uOlFVUvTkK33zXiVfg1ax2ZAlZ+z9ufolwqFw7fd+/5alQ4BAAChTLPjeg0ehxnnD++u+wc53816uHmSfndv061j0qpcduQkS8cFsSTWfp81KZC9MML+z9t1p3P49nRCGV+u1iI/TveBFjb9BZ9XtuRvX5q1Po7qGqCRiZXNVXSvcPc56ywdF8SSWLvuYDFg6yyfN4Y7ZlRLRHKNPZ0wxs/GMHsCsXLoXuFRP6QJH15TNlcDLJbmHsIKjIH5kQGOtesOyiBH2iDHDk/oQKwcLInKGTrd0lFArAhrz+9AIJDnD6g7YMd13smHzZaOAtJNxMVp1ae3qERm3k0K6VWg7oDtN2pOZluL7pzL429Jqm4QqywdSL+htTiNl7BVJaq3dCBA3drcnHa69sLuptSj8vpSS4dj1fSP/M5AQKNFNlys+DetHj2PCnPn/YvGG4cq/tuoVckIDI5GIkQQxDFumdeSr2EGvV2g7lgFDWLViiNFTRLVnMF2J+BNX39DXJJRtv8Thu8Qv5W7ibaOGqmoZM/q+qS9DP9hZiu883xhYd0pbJRlVkv4MrUtBT/ck+lr98TzSaNFkktF5XwFAMDHjjzaxwb32BZ0x3VeiBMtztfmapGwuEnOpROmBHEYZJxEqb1YIGgUq73tyC8GsNHhCAK2XecFO1LH+9teLxUVNMjJBGycr403p/0TUjoE3CwT5dfLdAjw5VLifFhE/JO7URMB94TzeQIyHnt+5eCD5j712qvo1EpRdqKymYcgOrK9h03oWCz+yTJN0VjRWnRH3dpMZNkz/Ieh9qBoRkaUd9Nl0iq1uFn44KpOo2L4DmX4RAEAJOVZrUV3cSQqa9Aosv2j8S0Ft1oLbzu/uFIrFwsfXtPIRGQHb3b4RNSWsC0qQa0o97q6tQlPs2UFxaDHrDoTcLfhZ5xFdFrvl38k2jqi1jwe8z8XPkxsyU+ButMultSddWfL9qU3OLOI9nRibauqUaxaMcJp4yRPAEClQDH/37x6scqfS9HqkOJmuZ8d5fhrIWgBrN2ptZMC2fszGu7zJFQitkqo/Plmzb4lQUv25yEIkKt1zVL1eH/bvUsCUd/lHdd5EwPZ+9IbsmokdjRChUCxEYAfZ3i3LWJV16pafrCgoEHqb0/FYTCFTTJnJnHfkiA/LsV0wIYUNcnP5LS/ZqERcW/GOLdtH+tns2yoA75f+S3LagryflqolbVSnP0Agshqiggsu0Fr/6M4+QEAqo5/V3NhF4HBIdo6KZurtAqJx4IvnMa/jooLL2ErmetefuhzIsteKazTKWXeL/+gaeXzzu0ksZ0VTZUYHD4Jl3N5AAAgAElEQVTog0NM/2EAAElJBi9hK4FuW3X8O3Q1oRbzae4hwR/Fo5ajhtRe+r3q+Dc4CpPi4KVsri47sM550iqPeZ89M2BD6pP2qlvb/x+0DRtP9wwzavRctNF97jrUbAgFPVPWkTJCLPZzyW+Q7UtvWB3r8sl4d3RV8lNS9fbrvDmDuYOdaevOljdKVBf+LzTYkQYAuFYkXH6wYGty9VdTvFApuVQgeHWY47+LAwEA312t+vlmzay/cr6f7j05iK3VIa8cKkCXQqheYLGYy4WCpUMc9i4JxGMxVULl3H9y1p8vR1dJhlG9HV9cIZAnvBGKniYtbpLP/jtn1bGiq2+FmQ7YcBKeSHk0q6ndT82hEtrVHQ92/zueXn3qJ0SjjvzhLoFlj/rg5Hw7s/LYV4Hv7hWXZtac/9lu2CzfN3ZisDidSpG/bUnl0c12Q6cTWPZoyqPmwu7BGy6RuR7q1qasz0ZXxX9DdQ0asi0LR6aLSzJyvp1Zn/gPqjsAiwUA1Jz/JeSzBKpLIACg+uQPvLM7ai7udp/9sWFILfkplUc32w2f4/PqFiyeiOi0lUc21V7YzfCOZEdONhGw0UcT3r/UUWKY4uDVVnf0Dmd6Gm4eQovemOEH/TxiMd1BH9nobUkxGPDBaNfXhjlyaAQAwNwwu5mhnODHewXH+duyqfiHtVL92/E4zJo4N/T1tGDOzzdrAu2pk4PYAAAcFjMpiJ1YLKoQKPwe18Yj4DCfTfBAFxTutqTXhjl9dbnyZnnLlCC2fs6CBtndytY3Y5xR0QEA+HEpK4Y7/ZBYnVUjQX0OOwrYkLF+Nnc/iOy1n5y1oBY1ACxWb4dM4riGbbyKI9MBAHgqy2vxl6zg0Wg9XyyRzBk6vbXojpSXb8N6tMZ0iH0JvfMiMLkM/2HCrMtusz5E387wHUK0cVA0VhhezmH0UlR0AACuM9fUXftbmHXZSHfqE/disDjvpd+gd08YLM59/vqGm4cbbx5iR042EbARQWsO9eQnI7h3vubcL3bDZtsEj+7JPM8xFtOd4R5Mfy7l+2tV6VWtY/xsR3qz/LkU/Xd4bhi3Wao+l8evbVEpNDqtDtEhQGJgVOzNoegdCFH/9gD7J6kWFhkPAFBpnxikBtrT9CfaAQAB9lQAQAX/qVIT2XVSAEA5X7ElqVrfWMpXAABy66VzB3NNBDwAcRizvOTvD7LWj+ZEz2AFjmQGDNdbYVGcfCmO3uLyrIYbBzVSEdBqJZXZAACtXKJ/O8UlQP8aT2UCAKgGLTgqC1E/tZmA7v1EyjFYPMXRx7CqH4q0KhtLotZefuo8PY5Ml1blmg7YjNRd3VN5ZDM7YpLva9vMPvlzg8V0h0zAnlkR+k9a/dlc/hcXyhEEeLLJH411mxlqBwDYfp23LZlHIWCDHKhMMh6PxRiKCADAUETQJ5UUAs6oxRDm0/dTaIEKufopx3VU14qaZI2Sp37jI1zpFALOdMADEO4L88lcj/rEf5tSjtZd/hODJ3Cipnm+tInA4CgaKwt2viyvK6Y4+ZHYzhgCSd1mXx+OaJiSx+hzIo//bfxfiKMyn/oniapTKcDT3hFahQTRqkU5SYaNJI4LlkA2HXDPfxoAAESjLjv4aeONQ86T3/KYu66dAmGQx1gy70Un4VbHuqyOdeFL1Uklot0ptW8fL3ZmkQg4zI+J1eP9bX9f4E9+rC9Dt2b25FpGbvAylRbN8ho2ormeVTHOHdX56yjgoe5PZTe7kVfupzD8ohl+0YhOK63Mbr5zoj7xX7WYP2jt4fJD6xUNZcEfxTMDRqAjG1P+k/yztifX0j7tBq9VyrAkqtFfGDyFqcMTQz8729WAjYZ1Na+MVigs3P1GS+4NvxU/2w2f08UPN+CwmO7wpeoqoRLNpHBohHlh3ChXxsid95NKRE4MIlqBTy86ZXxFXauKwe1+tKV8uUKt009Y1CgHAPg8/RQ81IkGAMislhjqTn6DjC9Vj/BkiuSajgI20p1u5JX7HYhOK68twjM4RJY9Bouje4XTvcLVYkFz2mlEo5ZWZlOc/fWiAwBoyUvp4RWl1bk2oWMfX10jry9tW9GB5hHCzzyvbK4m2bnpG5vvnmT6jyCwuCYCxuCful/uRl655K/3W/JuBr6/nxU0soefdCBgMd05kNHwU1L13iWBY/0e3WNnVIsBAE4MohOLCAC4z5OgeeIqofL9kyWODGKLovsVbOQq3Zbk6k/He2AwoEGs2ptezyTjY7xYhmMC7KnR7owTD5umBbPRqOpbVW/HF0uU2pR3w00EbHStgZBXRtTKnO9m070iAt7+E03NahUSWU0BgWmHwROItk6KxnJ1axOByQWIru7a39LKhwAAraz7tUAakg9woqaRHbwAALUXf9XKxZyoKUZjHOKW8zPOlR341P/NX3FkOkCQumt/Vxz+wnvZd9wRc00EbDRPV/PKwofXmu+e9H75Byg6ncRiuvPGCKfU8tZlBwpcbUh2NIJApq4SKsf72y6M4GIxmHAX+q6UmqtFQjwWUy6Qb5vlm1Yl/utO3ZL9+R+OdevE9MbEerPuVUuitmQ6s4iFjTKVFtk529ewDCnKL/P8lh8sWHagwMOWzKLgChrlNmTcP4sDiXisiYB7/tNYuDcvt14KAECLhS3cm4c+ets0yXNumBnmNztYEtXn1S0lf67O+CCM4ugLAJDXl2LxRN8VPwMAXKa+U/zbW/c/jaU6+SmaqymOPoHv7c/6fHT16Z8UjRUEVnc+ETdmwcMvJ5O5HlqFRNFYwfCOdJqwwmgMK2ikx7zPqk5+n7kmkuLkq2ptUglqHUYtsR+1GIPFmQi4h9Sc+xkAUBX/TdXxbw3byVyP0PXnej7/84fFdIdGxB19ZdA9njinTtai0HCohAhXepDDo3KRp18PuVQoqBAoWGT8OH9bJyZxnL+tnx1FodHZ04nvjHRxNFhlsMi4NXGu0R5P8o5+XOqaOFc/7pPikzgs5sgrg66XiAoaZbND7cb523o+3jLz/igX98fVHVxYpMtvDk4tb82rlyIArGaTx/nZkPDYZwbcQ6YHc6LdjbfAAQD87Xu9fma34URNZQWNFOUkq4R1GAyWyHGxDR2L5oY5UVOpm6+25KfqVHKqaxBrUCwGiwv++ERr4W2KgxfBxtF1xhoix0U/FTtyEsnODXV6R3EY+7LR5djhE+xHLhQ9TNTIWyiOPrbhL2KweLRUjuuMNXpDeOfJb9kNm6Xfr8wMGK7fFmgi4B7CfWEea1Bs23ZYU7QjrN3X3Sx4fXk31pu1b0mgpQPpLazZ173n1Jz/per4t6Gfn283sfIcAH3dIRAIpNeBugOBQPqaAXFuzTCDA+l3GGVwIM8BA0J33hvt2olRECsF3exn6Sgg5gTeZ0EgkL6mP6130qrEN0tFS4c4WNYDNLtOerlAgL6eFMQO7p0CO1eLhA9qHp2iXDumO1uWrBDe2R1krrvdsNmWDaPu8h8auRg9j9p2E5BZ0CqltRd/Q19Tnf1hGR8j+pXuVLZuTeZZ3Hs4u1a6NZk31J3BJOOHGWwa4kvVBzIa3G3Jswd37aRos1SdWCRqkKg4VMIYPxu0FGqNSPmgVlotVBQ1yZ8b3ak5s501KNbiulN7+XdEo6Z7hROYj3cwIkhr0R1pZTaC6KiuQaygkaiDRydpLbor4+UjWjXZ3tMmOA6DJyBarbTiAQBAlHOdHTER6o4R/Ul3rIovJnpEuj7Z6XefJ1lxpLCuVTXO37ZLunMmh7/mdIlKg3DphGapGoPBfDfNa2GE/cvRji9HO/55u27jxYpOTAPpGjSP0MD39qGvtUpp4c5XWgpu4aksDA6vFvPp3hFBHxzEU1nPmgZoJMKCn18Vl6RjSVQMFqeVi0l27v5v/kr3CkfnT3vnud011hNgfscMHMhomPNP7qxQO0Mn5s5QLVKuPlEcaE9LXxuVsTbqwYdDhnswPkwoK2qS91qwEGMqj2xuKbzt+9q2oTtzh2x/GPDOX9KK7PL9nargXvznanFppu/r24ftKor+pSDw3b0qYW3Jnnd7P+r+TV/rztUi4Zak6map2rCxSaLeklR9rUiI/rNCoPjvXuMvN2uO3m+qFCranSe1vGVLUrVA9uSkaLNUvSWp+nZFq76ltkV1+F7jzhs1+9Mbyvjtz2MWdtzgbZvls/5Fj66+8WBGg1qL/DjD255OAACwKPgfZ/joEOSfu3W9E6kZqD69hZ9+xqiRn5ZQfXqLVilFHSGED67WXfmz7sqfwoeJiE7bziyIrvr0Fn7GU2eX+Olnqk9vMRwjyr1ee+m32gu7hVmXdZpeqSmmVUgaU4+wIyZzYxagrhrsiEncF+Y1pyeoWxpNv1cjEbTk37QbOp37wnz0vbZh49kRk+T1pSqh5et5WTN9fZ+l1Oi2JvNsKPjXhzvpG08+bN6azPv7pQDULHlXSg2HRnBiEquESolK+8WLHoaDUVLKWnbeqJkZaoc6vaO6szWZBwAY4ckEAPx+q/abq1VMEs6LQ6kWKdedK1sV4/zZhHakYW9avZEO6hkfYBvm3I4PphH/LR/k063CEqnlrQ4MYqDBIS9XG5KfHSWlrPvntnsbwb3zDUl72VFT9BkQRKspO/gpie3sNnOtorEy78f5KlE9xdkf0WlR66+Qj4/j6WzDSRBEx0vYyomewRkyVd/ITz/DzzznNnMtAEAlrCvYsVzKK6C6+GOwOFlNIdHWOej9fW092OW1Rc1tdBAFR6Y5T3zT9McRl2QgGrVNaJxho03omMaU/1oKbtkNm2XivXg6e/jvFTrtU788jx3du5AeGoD0te68GMBmUfAJOfyndCe7iUMjjPOzzawW/3yzZlao3c45vjgsRqHWLdmfv/ly5fQQO3RF0ElSylo2X6qcM9huy0wfIh6r1SGbLlXuTqmNdGVMDmIbDb5UICzlt39f48WhdEZ3uic6AIBygTyAa3zy04NNTioW6RBgndUluCPmVR77qrUglTVoFNoiyknWSISu098HAJQfWKdqbQz9/ALNPRg1iCjYsbz69FavJV916SrFf7wtb6wI/TSB7h0BAJDXFed8N7vot1Vhm64ajVTyeU2pR9udhMDgPFN3FI3lAACyvZdhI2r8rGgof3agGIxhJRx1a7PwwRWGT9STjDWkPfpadwg4zPRgzsHMhtoWlTOLiPoZP6yVrhjhhMdhWBT8l1O8Rvuw0FJZZAJ2egjnTmVrfoPUnt6Fo7170+pxWMw3U73RhAsOi1k/wf3wvYZDmY1tdefQ8iBzf8rOIlZq6STjP4wMEk6jQ6QqLaNNlzVgN3xOZfw3zeln9LrTfPcUBodHn1LZjZjLiZ6Jig4AwHbwODydjZrvdB4Zr6C16K7zxDdR0QEAUJz8nCasqD75g6Q8i+4VbjjYJnRs5A93u/1xtOgDdcpTf13Q8jgaeddWnVqltHDXGzq10mvZd92OZ4BggedZ88O5BzIazubyV77gBABAa5MvCOcCAHztKN4cSlaN+GBmg0iu0epAdq1E73zcebLrpFQi9o/btYaNdCIO9bixctBTyVa51gEAAKKNAytopCDzvPfSbzE4vE4lF2Rdsh08HnUp5o6Yq25t5meeUwlqdWoFotUCRGdo594ZpFXZ6ErEMN2jqC9FXQeNdKentHsIHOnyf4JKWFew82VFY2Xgu3tpboPMFt5zigV0Z4gbw5NNPp3TjOrOqezmYEfaIEcaWq7v5UMFaN0rZyaJhMc0iNvPvJhGotKqtUhSyVOOvC42JHIXnzf1NiwyXtxGUlsVWjwOY+T9bFVwX5jXknejJe+GTehYQdZlnVLGjVmAdvHObOclbMOSKFTXIDyVicHiu5EP1iokAABZbZHq6cwu3TsCZw67HENwNBYAQCMTGzZq5K1dcs8Rl2YW7noDSyCHfHpaX2wHYgLL7N+ZG8bdklRdJVS2KDSlzfJNkx+V3Fx/vryMr4h/NRjNDQMA/rvXuPZ0p/5aolbtKEwSnojTnV0R2pk39jyv3G28OeTyNqml0ma5N5vctiSG9cCJnFxOojWnJdiEjm2+c5LA4NgOHocWAq0+9aNt2Hj/N3/HEh8dxM38cGgnp0Ufh+lvc5wnrXIYteSZ7+phXpni4I2urVhBMfpGdG3V1r+5XVryUwt2Lqd7RQS8vQcafXUSS+mO3Zak6ov5gmapGo/DzH5cCia7TurPpehFBwCQUt7+PTbqAShWPNEaw6p+IU608/n8apHSzeZJFceTD5tHeDIdmcZ7nXueV+42sd6s9CpxTp00xOnRYYviJnmFQLFihPHzO6sCS6KyoyYLsy5rJEJRbrLjmFfQgrzSymwAgP3IRXrRUTSUqYR1eCdjK0UMFo/B4rQGqwxEq5Hx8tHXNI9QAICkNNNQd2S8fLWYzwwYYbSTuId5ZYbvECyRInx4zWH0Un2j4MEVDBbPCowx+VYAAJBW5xXsfJkVNDLgrT1tfZohHWEZ3fGwJQ91Z1wtEta2Ksf72eqr3zkxieV8RZNEzaUTdAj4+24dqiYtcuObER8OBQCQkNuMFngoaJTtT39SoWn5UIdzefxPz5b9Ot+fTsIhCPj7bt0XFyq+m+a9bKhxjZrezitvS+axqfiXo9uxcVg2xOG3W7Ufnyn756UAewaxWapee7qUiMe+OszaPR+4I+Y13YqvOvk9olHrb7KItk4AAEnZfXbkZACAsrmq5K/3iTaO7SZoyQ7e4tIMlbCOaOuE6LSV8V/p1Eq0i+ocwPCLbrpzgh01zXbwWACASlhf/PvbWoUk/NsUI93pYV4ZS6Q4xC2tu7Kn8eZh+5GLAAbTdDuen37GIXYxWtWvtehOS36q3dDpFGd/4zcjurK9HxJtHf3f/A2KTpew2DmJeWHcdWfLdAj43GC73TuxLm8dK479+b6fHbVapPDhUPYvCRz9S9ZPSdUVAoVh7b0JAbbBjrQ/btWdzeWT8Fi+VLNzju8rhwp0CAAAjPRmfTbB4/vEqsifMn3tKE1SVW2LakmUw+Ioe7N/kOulorfji9HXKo3ueqko5Pt0AIADg3jtrTAAwLbrPD87Sru6Y88g/jrf/5344qFb79kzCI0SNRGH+WWur4fVuwWxgmKItk4N1w/S3IP1aVSbkDi6V3jNhV3CB1cxeLy8odz3tW3i4rS6q3/lb1viNutDwxlcpr5T+vfa++tiyPZeKmEtKyjWbtjs+sR/AKIDGKzfyl8Kdiwv2LGMzPXAUVnymgIczSZw9T+GD63NhfucdYr60tJ//1cZ/zUAGI1EwBoU67loI9rbWnSXl7CV6hrYVnda8lMl5VlYAqntvaT3su8NtyZBjLCY7swMsWsQq7AYzDi/J7Vipw7iXH2LmlreIlfrghyosd4sHBZz4rXg2xWtXhyKHY2wJs4VdXQnE7DnV4ZeKhRUCpRMMm5CgC2HSlgT5zrU/dE92lsjnWeF2l0vFTVJ1LYU/HBPpr5WunlxsyG/2p6mMEiPfrYLI7h59bKO3j7e3/bW+5FXC4X1YpU9nTA+wNauX9Q+xmC9lnwtrcph+g970obDh6w7Lbh/SdFUgaeybAePI9o62Q4eR3Hy06kURJa9y/T3yVx3dDB3xDy6Z3hr4W2tXEx1G2QTPLol/yaebovodBgclsR2GbzhcmtBqrQ6DyAI2X61Teg4LIHUcUDdB0sgBb63v7XorqT8PgCA7hnG9B+urwjI9B9G5nq0m88mcVxcZ6xpd06Ko3dvhPrcYDHdYZBx7R6z9uNSjAQi0pWhP4FpWHQBj8NMHfSUgbzRhM4s4kuR5l/gGOHNIZs+L+5rRzH9cIpNxS8wRzGcPoYdMZEdMdGoEYPDG/2dxxIpDnHL0Neu094z7KI4+VKcfPX/ZA0apd8TBADAYHFGLb0K03+YoYbqoXuG67Rqmsfgtl1kB290dzWkq1jXc+XnEiwG8+YLz0ON0IGJvL7EY+46ArNr3iYQ00AfjG6y+VIlk4xfOcJppPcz3BK693Bqb1r9tWJRdQfHYiE9RFqZXbBjOYHJ9Xl1i+mRNPcQmntIV+fXyFpL/nwHAKBTQmuBdoC602UWR9n3Rn7aCNR/p7evMjCJ+imzty+BpzL1/j6QtsD7LAgE0tdA3YFAIH1NP9OdtCrxlqTqBnGvWEBBegne2R3Nd09aOgqIFdHfdKeydWsyrx7qTr+i5sz25jtQdyBP6Ge6A4FAngOg7kAgkL7Gep+jl/MVN8taxEqNhy15vL8tmdC+RFYIFHcqWpulans6cZgnw/Bkk1KjSywW8URKHYJ4sMljfW309R5MdPUEtLLgqhgXuVp7uVAolGncbUkvBtgaTl4pVNwsbRHINCwybpgH09Bcub+DaNTC7ER5fQmezGD4DaW6tn/gFtFqRDnJjwxGHXxsQkYbHvWU1RZKSjLVEj6eZsv0H264odlEV/fQKiS1l35vW1dPcO+CtDrP+cWVOAoDIDpR3k0ZLx/odBQnX1ZInOEZMbOHNECwUt3ZklS9/TqPTMA6MIjVIiWbSji0LCiozVfUhAl8QaNs4b95rUqtnx0FAaCoUWZHJ/y3fJAfl2Kiy2j+rlrzZPEkW5N5AfbUT86WMcl4rQ7hiZR+XMqZFaGoaen316p+uVnDIOO9OeQakbJRop4fzt06y9c6rZS7hKKxMn/7EkVDOYnjqlPJ1WK+49hXvJZ83XaYCeP3sgPrGpL2EdnORJa9SlCraml0mrACPaJposuQLtnx4Mh04YMr9Vf/so2Y+ERNEKT80Od4CtNt5lrT9vKdDAnSFmvUnaQS0dZk3uIo+2+neeOxmCqhcuZfOf93tOjG6qcMLk2bwP+UWK3WIXc/iEQN4Xki5cy/cr66XLl3SaCJLqNIumrNg54l/OZK1cFlQWjvT0nV25J5CTnNS6IcLhYIdt6omRHC2THbl4jHIgjYdKniz9t1Ua6Mtu4c/Y7iP9/WSEWDv7hA8xgMEF3ViR9qzv/M8Iu2i55pOMyE8buMl9+QtM9lymr3uZ8AAACCVJ/+iXdmO3fEHAyO0FGX0cmprtrxOIxeWrbvY8G9C/o4W4vvqoR1zi/+n2l7eRPRtnuYC2KINerOwYwGPA6zYaInHosBALjbkrbM9K4QKGUqneEw0ybwDWI1FgMoj+/OXG1IV1eFoSbqJrqM6J41z6JIe70kzQq125bMK21WAAAOZTbisJivH7vNYzDg0/HuBzMbjmY19XfdkfHyJWX3Xaa88+grh8G6TFuNpzKJLOON3SaM31WiBgAAjvR4VYvBuE7/wHHcawQGR5ST3FGX0fxdteOxGzar8sjmxpv/6XWnOe00Boe3GzHHtL28RirqZEiQtlij7uTUSd1tSIZCMNbAK0OPaRP45UMdPjhVMvrnrBkhnJHerOEeTNvHlbZMdJmFwc40/WsmGY+mkwAAefVSVxsS2+BaRDzWz45a2NihS0Z/QVqVAwAwTOjgSDTnyW+1HWnC+J3pP5zi7F918vvWknTb0DGsoJEUZ3/0a2yiq4fgyHS7YbMabh5W8nkkjiui0wgyzrHDJxIYHFF2ogl7ee7wub0U0kDAGnVHotI6MZ/ttGLaBH5+ONeDTf43rf5oVtOft+sIOMy0YM6mSZ4cGsFEl1nip3bgeiFRad2oxpegErEyddeqZVghqBO73t7UBCaM37FEcuhnZ+oT/+Gnny0//AVAELK9p9vsj+yiZ5ro6nnw9qOXNNw42JR61HXGmpa8m2ox3z520TPt5Xs1pOcea9QdBgnH7yCba8gzTeCj3RnR7gytDsmuk5542PxvWj1fqj68fJDpLkPMa/nOJOEFMuPZJEot3YpLR3QSHJkBAFCL+aaHPdP4HUemu0xZ7TJltVrMF+Uk1Z7fXfzH2yS2M8N3qIkuw0t0w+ad7hlG8whtuhXvOmNN893TRFsnVvDoztjLdzIkSFusUXdCHGkXCwQ1LUoX1qNVz63yltx62fzwp8yxTJjAa3VIUZOcQ8XbM4g4LCbchR7uQhfI1KezmxVqXblA0W6XWosQcE89WDKv5XuIE+1KoUBfsBAAIFfripvl4b1pHd83oE4RkrL7+q8ootPUXvqd5jbIJmSMfphp43e1mK9sqkKTKQQGhztiHsM76v6nI0XZSWQH7466jL7k3bN5R7PL4uI0wf2LTuNeQ5/rm7aX10hFnQwJ0hZr1J2XohzO5ws2Xqj4ZZ4fCY+ta1X9L6FMotQa2YmaMIFXapDZf+dEuND/XBiA5okkSm1Bg8yORtAhoKMuI9Exu+X70iEOlwoEX16u+HmOHx6H0eqQjRcrFGpdH7hq9DZU10C6d0Tz3VPcEXOZASMAgtRe/K3q+LeeL20y1B3Txu8N1w9Un/op8N29qJc7AEBcmoG+y0SXUSTds3lHs8ulez/SKiTckQsffSiT9vKdDwnSFmvUnbF+NmviXLdf5w36Lt2ZSawSKRkk3J5FAfindcG0CfyWmT6rj5eE/Zjha0dBi1IR8dif5/hSidiOuvrgc60d47b9Ou9mWYYXm1IhkAvlmhUjnOaG9T+T07b4rdiVv31J7g/ziGxnRKNWtzZxomc4jn3VcIxp43fnyW+zAkcU7FhG4rgSmHZqsUDZXGUbNp47ciGiVbcWpLbbZZbgH2WXbxxkBb6AFkd/9KE6tpd3mvBGr4b0fINBkHYLtXZ3Ogzmt/n+00NgVr9PWXmkiDJozLFjx3o4z/z585Mq5P6r/uje2x/tV64rxpHpdO8IumcY2s47u4PMdUcLqCNajZHxu04lb7oVr1MpOEOmEtnO4rJ7ssocjbyFQOfQvSMMn5GZ6Oo5gnsXCne94bfyFzTOJx9KpzWwl/cwspc3S0j89DNFv71p3m+ilWON6x1IPwWDJ7AjJoI2Zu+Gdu6mjd8BAAzvSIZ3ZLvzm+jqOU234glMLidqmlG7aXv5Xg3pOQaeC4VAQMP1A4L7F12nvwfL7/UNcL0DGdBUn/yh6c5JZXMVO9zjMckAAACcSURBVHKK45iXLR3OQAHqDmRA4zb7I7fZH1k6igEHvM+CQCB9DdQdCATS10DdgUAgfY358zt/3K47k/uMczoQ83KPJ44xPlvWTcSl94p+XWmeuSCdQyWos3QIfY2ZdWfevHnmnRDSGWIGgREjRvR8HrNMAukynt4g0tvSQfQpZt6vDIFAIM8E5ncgEEhfA3UHAoH0NVB3IBBIX/P/KaXZtsN6onMAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dot_data = StringIO()\n", + "export_graphviz(clf, out_file=dot_data,\n", + " filled=True, rounded=False,\n", + " special_characters=True,feature_names = ['Income','Credit','Gender','Unemployed'],class_names=['no','yes'])\n", + "graph = pydotplus.graph_from_dot_data(dot_data.getvalue())\n", + "graph.write_png('graf.png')\n", + "Image(graph.create_png())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Titanic" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "titanic = pandas.read_csv('titanic_full.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
88688702Montvila, Rev. Juozasmale27.00021153613.00NaNS
88788811Graham, Miss. Margaret Edithfemale19.00011205330.00B42S
88888903Johnston, Miss. Catherine Helen \"Carrie\"femaleNaN12W./C. 660723.45NaNS
88989011Behr, Mr. Karl Howellmale26.00011136930.00C148C
89089103Dooley, Mr. Patrickmale32.0003703767.75NaNQ
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Name \\\n", + "886 887 0 2 Montvila, Rev. Juozas \n", + "887 888 1 1 Graham, Miss. Margaret Edith \n", + "888 889 0 3 Johnston, Miss. Catherine Helen \"Carrie\" \n", + "889 890 1 1 Behr, Mr. Karl Howell \n", + "890 891 0 3 Dooley, Mr. Patrick \n", + "\n", + " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", + "886 male 27.0 0 0 211536 13.00 NaN S \n", + "887 female 19.0 0 0 112053 30.00 B42 S \n", + "888 female NaN 1 2 W./C. 6607 23.45 NaN S \n", + "889 male 26.0 0 0 111369 30.00 C148 C \n", + "890 male 32.0 0 0 370376 7.75 NaN Q " + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Survived\n", + "0 549\n", + "1 342\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Survived.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Sex\n", + "male 577\n", + "female 314\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Sex.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Cabin\n", + "G6 4\n", + "C23 C25 C27 4\n", + "B96 B98 4\n", + "F2 3\n", + "D 3\n", + " ..\n", + "E17 1\n", + "A24 1\n", + "C50 1\n", + "B42 1\n", + "C148 1\n", + "Name: count, Length: 147, dtype: int64" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Cabin.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Embarked\n", + "S 644\n", + "C 168\n", + "Q 77\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "titanic.Embarked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_4882/3535274200.py:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " titanic['Sex'] = titanic['Sex'].replace({'male': 0, 'female': 1})\n" + ] + } + ], + "source": [ + "titanic['Sex'] = titanic['Sex'].replace({'male': 0, 'female': 1})" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "X = titanic[titanic.columns.difference(['Survived','PassengerId','','Name','Ticket','Cabin','Embarked'])] # Všetko okrem\n", + "y = titanic.Survived" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeFareParchPclassSexSibSp
022.07.25000301
138.071.28330111
226.07.92500310
335.053.10000111
435.08.05000300
.....................
88627.013.00000200
88719.030.00000110
888NaN23.45002311
88926.030.00000100
89032.07.75000300
\n", + "

891 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Age Fare Parch Pclass Sex SibSp\n", + "0 22.0 7.2500 0 3 0 1\n", + "1 38.0 71.2833 0 1 1 1\n", + "2 26.0 7.9250 0 3 1 0\n", + "3 35.0 53.1000 0 1 1 1\n", + "4 35.0 8.0500 0 3 0 0\n", + ".. ... ... ... ... ... ...\n", + "886 27.0 13.0000 0 2 0 0\n", + "887 19.0 30.0000 0 1 1 0\n", + "888 NaN 23.4500 2 3 1 1\n", + "889 26.0 30.0000 0 1 0 0\n", + "890 32.0 7.7500 0 3 0 0\n", + "\n", + "[891 rows x 6 columns]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 1\n", + "2 1\n", + "3 1\n", + "4 0\n", + " ..\n", + "886 0\n", + "887 1\n", + "888 0\n", + "889 1\n", + "890 0\n", + "Name: Survived, Length: 891, dtype: int64" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "clf = DecisionTreeClassifier(max_depth=4)\n", + "\n", + "# Train Decision Tree Classifer\n", + "clf = clf.fit(X_train,y_train)\n", + "\n", + "#Predict the response for test dataset\n", + "y_pred = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.7821229050279329\n" + ] + } + ], + "source": [ + "# Model Accuracy, how often is the classifier correct?\n", + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "person = np.array([ # 23 ročný muž bez detí\n", + " 23,\n", + " 100,\n", + " 0,\n", + " 1,\n", + " 1,\n", + " 0\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 23, 100, 0, 1, 1, 0])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "person" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 23, 100, 0, 1, 1, 0]])" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "person.reshape(1, -1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: [1]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/br0kenpixel/Documents/ui-cviko1/lib64/python3.13/site-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "print('Prediction: ', clf.predict(person.reshape(1,-1))) # Prežije?" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ui-cviko1", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/graf.png b/notebook/graf.png new file mode 100644 index 0000000..ff0c7fd Binary files /dev/null and b/notebook/graf.png differ diff --git a/notebook/loan_historical_data.csv b/notebook/loan_historical_data.csv new file mode 100644 index 0000000..c46bd78 --- /dev/null +++ b/notebook/loan_historical_data.csv @@ -0,0 +1,13 @@ +Client;Income;Credit;Gender;Unemployed;Safe +K1;High;Excellent;Female;No;Yes +K2;High;Excellent;Man;No;Yes +K3;Low;Poor;Man;No;No +K4;Low;Excellent;Female;Yes;Yes +K5;Low;Excellent;Man;Yes;Yes +K6;Low;Poor;Female;Yes;No +K7;High;Poor;Man;No;Yes +K8;High;Poor;Female;Yes;Yes +K9;Low;Fair;Man;Yes;No +K10;High;Fair;Female;No;Yes +K11;Low;Fair;Female;Yes;No +K12;Low;Fair;Man;No;Yes diff --git a/notebook/titanic_full.csv b/notebook/titanic_full.csv new file mode 100644 index 0000000..63b68ab --- /dev/null +++ b/notebook/titanic_full.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q